
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Personal Information Model (PIMO) Ontology Guide
NEPOMUK Recommendation v1.0

Version 1.0
02.09.2008
Dissemination level: PU

Nature Report
Lead contractor DFKI
Start date of project 01.01.2006
Duration 36 months

NEPOMUK 02.09.2008

Authors

Leo Sauermann, DFKI
Ludger Van Elst, DFKI
Knud Möller, DERI

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Trippstadter Strasse 122
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: NEPOMUK Consortium 2006
Copyright on template: Irion Management Consulting GmbH 2006

Task Force Ontologies Version 1.0 ii

NEPOMUK 02.09.2008

Versions

Version Date Reason
0.1 01.06.2007 a template of the document prepared by Antoni Mylka
0.9 12.08.2008 Finished for review.
1.0 02.09.2008 Reviewed and accepted.

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

Task Force Ontologies Version 1.0 iii

NEPOMUK 02.09.2008

Table of contents

1 Abstract . 1
2 Status of this document . 1
3 Introduction . 1

3.1 Downloading PIMO .. 2
4 PIMO integrates with key ontologies . 3
5 Examples . 4

5.1 PIMO ontology and namespaces . 4
6 Creating Personal Information Models . 5

6.1 The User and their Individual PIMO .. 5
6.2 Things . 6
6.3 Connecting Things to the User’s PIMO .. 6
6.4 Identification of Things . 7
6.5 A Complete Example . 10
6.6 Labels and Names of Things . 11
6.7 Textual description of Things . 12
6.8 Rating and Ranking Things. 13
6.9 Modelling Time . 13
6.10 Representing Modification and Change Dates. 13
6.11 Setting the Class of a Thing . 14
6.12 The PIMO-upper ontology . 14
6.13 Classes in PIMO-Upper. 15
6.14 Describing Things with Attributes and Relations. 17
6.15 Generic Properties in PIMO-Upper . 17
6.16 Refined properties in PIMO-Upper. 17
6.17 Creating Personalized Classes and Properties 18
6.18 Collections of Things. 18
6.19 Modeling Associations and Roles in PIMO.. 19

7 Connecting PIMO to Information Elements. 19
7.1 Connecting Things and Classes to Folders 20
7.2 Integrating Facts about Things . 20

8 PIMO-group level: Group and Domain ontologies 21
9 Extending PIMO .. 21

9.1 Refining Elements of PIMO-upper . 21
9.2 Markup for the new ontology . 25
9.3 Information Elements . 25
9.4 Extension by Sub-classing from External Classes. 26
9.5 Summary . 26

10 Importing Domain Ontologies into a User’s PIMO 27
11 Practical Directions on Using PIMO.. 27

11.1 Creating Things . 27
11.2 Changing the Type of a Thing . 29
11.3 Deleting a Thing . 29
11.4 Deleting User-generated Classes and Properties 29
11.5 Merging Duplicates. 30
11.6 Unification of multiple Information Elements into one Thing 30
11.7 Tagging and Annotating Files . 31

Task Force Ontologies Version 1.0 iv

NEPOMUK 02.09.2008

11.8 Geo-locating Things. 33
11.9 Defining what is in the PIMO and what is not: NRL

Graphs and definedBy . 33
11.10 Using NAO and NIE Elements for Annotation 34
11.11 How to Infer Knowledge Using Rules? . 35

12 Rules Defined by PIMO .. 35
12.1 Construction Rules . 35
12.2 Validation Rules . 38
12.3 Rules Valid when Integrating with NIE . 38

13 Sources considered for designing PIMO .. 38
A PIMO Specification . 42

A.1 Ontology Classes Description . 42
A.2 Ontology Properties Description . 55

Task Force Ontologies Version 1.0 v

NEPOMUK 02.09.2008

1 Abstract

The PIMO Ontology can be used to express Personal Information Models of
individuals. It is based on RDF and NRL, the NEPOMUK Representational
Language and other Semantic Web ontologies. This document describes the
principle elements of the language and how to use them.

2 Status of this document

This section describes the status of this document at the time of its publication.
The form used for this status message and document is inspired by the W3C
process.
This document is an NEPOMUK recommendation produced by Leo Sauermann
and Knud Möller as part of the task-force Ontologies in the NEPOMUK Project.
The document has been promoted from a draft form to this official form upon
reviewing by the general NEPOMUK consortium. Subsequent versions of PIMO
might mean that the specification documents of the later versions render this
document obsolete, with respect to the version of PIMO in use, but not with
respect to this version.
This document and the PIMO ontology as such is a continuation and improve-
ment of existing work. Other documents may supersede this document. Parts
of this document will be published in other documents, such as scientific publi-
cations. This document is based on various other publications by the authors,
and is a continuation of existing work. Some formulations from the RDFS
primer and SKOS primer documents were reused.
Additional to this document, a FAQ is maintained in the public NEPOMUK wiki1.
This document is accompanied by a RDFS/NRL ontology2, which should
be downloaded (see Section 3.1) and read in parallel to learn more about
PIMO.
The editors of this document value feedback from from the public and from
the NEPOMUK consortium. Typographic errors and change requests of the
ontology can be reported using the NEPOMUK tracker3, using the category
ontology-pimo. General questions about using the ontology will be answered
in the FAQ. Subsequent versions of the ontology will include improvements
gathered in this way.
We want to thank our reviewers for their feedback: Ansgar Bernardi, Siegfried
Handschuh, Pär Lannerö, Enrico Minack, Gerald Reif, and Max Völkel.

3 Introduction

PIMO is the abbreviation for the Personal Information Model of a user. The
PIMO-Ontology is both an RDF vocabulary4 to express such a model and an
upper ontology defining basic classes and properties to use.
Readers of this document should be familiar with the Resource Description
Framework on the level described in the RDFS-Primer [2] and the NRL spec-
ification5. The emphasized key words “must”, “must not”, “required”, “shall”,
“shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in

1http://dev.nepomuk.semanticdesktop.org/wiki/PimoFaq
2http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#
3https://dev.nepomuk.semanticdesktop.org/newticket
4More precisely, PIMO is based on the NEPOMUK Representational Language (NRL), which

extends the RDF model with a semantic model and support for named graphs and other features.
However, for the sake of simplicity, we will use the term RDF throughout most of this document.

5http://www.semanticdesktop.org/ontologies/nrl/

Task Force Ontologies Version 1.0 1

http://dev.nepomuk.semanticdesktop.org/wiki/PimoFaq
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#
https://dev.nepomuk.semanticdesktop.org/newticket
http://www.semanticdesktop.org/ontologies/nrl/

NEPOMUK 02.09.2008

this document are to be interpreted as described in RFC 2119.
The scope of a PIMO is to model data that is within the attention of the user and
needed for knowledge work or private use. The focus is on data that is accessed
through a Semantic Desktop or other personalized Semantic Web applications.
We call this the Personal Knowledge Workspace [9] or Personal Space of
Information (PSI) [10], embracing all data “needed by an individual to perform
knowledge work”. It is (1) independent from the way the user accesses the
data, (2) independent from the source, format, and author of the data. The
abbreviation PSI will be used.
Today, such data is typically stored in files, in Personal Information Management
(PIM) or in groupware systems. A user has to cope with different formats of
data, such as text documents, contact information, e-mails, appointments, task
lists, project plans, or an Enterprise Resource Planning (ERP) system. Existing
information that is already stored in information systems is in the scope of PIMO,
but abstract concepts (such as “Love”, “Language”) can also be represented, if
needed.
PIMO is based on the idea that users have a mental model to categorize their
environment. It represents the user itself and the fact that he has a Personal
Information Model, this is described in Section 6.1. Building a PIMO for the
imaginary user Claudia Stern is the guiding example for this document. Each
concept in the environment of the user is represented as Thing in the model,
and mapped to documents and other entities that mention the concept (see
Section 6.2). Things can be described via their relations to other Things or
by literal RDF properties, the key properties are defined in Section 6.14 and
directions given how to use them. An important question is the class of a Thing;
the semantics of classes and top level classes are presented in Sections 6.11-
6.13. To match and align similar concepts, existing identification systems are
reused and integrated (Section 6.4).
PIMO is similar to SKOS or Topic Maps (TM) [1] in its goal of providing an
easy way of modelling, but different in the way concepts are modeled. RDFS
classes and sub-class relations (which are used in NRL) are used to represent
the classes of Things, individuals are represented using typed RDF resources.
From TM, the idea of indirect identification is taken up.
PIMO is different from OWL, where sameAs relations are symmetric equivalence
relations forming a fully connected graph amongst identical resources. In PIMO,
Things are connected to their equivalent resources using directed relations.
The design rationale is to keep the PIMO ontology as minimal as possible,
and also the data needed to create a PIMO for a user as minimal as possible.
Inside one PIMO of a user, duplication is avoided. PIMO builds on Semantic
Desktop ontologies (NRL, NIE, NAO) and guidelines are provided how to reuse
other existing RDFS ontologies (Section 9) and import data expressed in these
ontologies. After importing, rules are used to integrate facts (see Section 7.2).
Only by addressing all key issues — precise representation, easy adoption,
easy to understand by users, extensibility, interoperability, reuse of existing
ontologies, data integration — PIMO provides a framework for creating personal
information management applications and ontologies.

3.1 Downloading PIMO

The RDF descriptions of the ontology can be retrieved from its namespace
using content negotiation:

Namespace:

http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#

Different serializations are available:

Task Force Ontologies Version 1.0 2

NEPOMUK 02.09.2008

• XML/RDFS Serialization: PIMO (Data Graph Only)
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_data.

rdfs

• XML/RDFS Serialization: PIMO (Metadata Graph Only)
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_metadata.

rdfs

• TriG Serialization: PIMO (Graph Set)
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo.trig

4 PIMO integrates with key ontologies

The PIMO framework does not stand alone but is part of a set of carefully
designed and integrated ontologies for the Semantic Desktop which were
developed in parallel to provide an integrated framework. In Figure 1 an
overview is given.

Figure 1: Integrated Ontologies

The NEPOMUK Representational Language NRL ontology6 builds the repre-
sentational layer and the semantic metadata axioms used to express PIMO.
NRL is a meta-language comparable to OWL or RDF/S. The key characteristics
of NRL are (on top of RDF/S) support for named graphs in semantic state-
ments, a notation for contextualized inference and semantics, and a selection
of semantic relations (inverse, transitive, reflexive).
The NEPOMUK Information Element NIE ontology7 describes desktop el-
ements such as address book entries, documents, e-mails, appointments,
pictures, and multimedia files. The ontology discriminates between the rep-
resentation (binary files) and the information stored therein. PIMO reuses

6http://www.semanticdesktop.org/ontologies/nrl/
7http://www.semanticdesktop.org/ontologies/nie/

Task Force Ontologies Version 1.0 3

http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_data.rdfs
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_data.rdfs
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_metadata.rdfs
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo_metadata.rdfs
http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/pimo.trig
http://www.semanticdesktop.org/ontologies/nrl/
http://www.semanticdesktop.org/ontologies/nie/

NEPOMUK 02.09.2008

the classes of NIE and suggests how to integrate and annotate vast personal
spaces of information (PSI) expressed in NIE.
Annotations and tagging are represented in the NEPOMUK Annotation NAO
ontology. It represents change-dates, author, and other key metadata of
documents. NIE and PIMO both extend NAO. A part of NAO is the NEPOMUK
Graph Metadata NGM ontology to annotate named graphs.
The PIMO ontology crosses two of the layers in the ontology pyramid, data
related to PIMO can be divided into three smaller layers (also visible in Figure1):

• Foundational PIMO: The PIMO ontology as such, as defined in this
specification and accompanying NRL serialization. This includes the
classes and properties of PIMO-upper (see Section 6.12), which work on
the Upper-Level Layer of NEPOMUK and everything else defined in the
PIMO vocabulary. PIMO-upper is the same for every Semantic Desktop
user and is valid in a global context.

• Group-level PIMO: Domain ontologies that are shared within a group.
They can be imported by users. A description is given in Section 8.

• Personal-level PIMO: The classes, properties, and Things created by an
individual user. Also called user-PIMO, this layer includes the data that is
only relevant in the context of one individual.

5 Examples

A scenario is used to explain the ontology elements. A fictional persona,
Claudia Stern, is our example user. She is working for EX-Ample Inc., a
fictional company producing “Extreme Guitar Amplifiers”, and her current task
is to organize a business trip to a meeting with guitarists and bass players in
Belfast.
For convenience and readability, this specification uses an abbreviated form
to represent URI-References. A name of the form prefix:suffix should be
interpreted as a URI-Reference consisting of the URI-Reference associated
with the prefix concatenated with the suffix.
RDF graphs are written in N3/Turtle syntax. Examples serialized as RDF
appear in this typesetting:

claudia:Claudia a pimo:Person;

pimo:isDefinedBy claudia:PIMO;

nco:hasEmailAddress <mailto:claudia@example.com> .

5.1 PIMO ontology and namespaces

The ontology described in this document has this namespace:

Namespace:

http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#

During the lifetime of the NEPOMUK project (until Dec 2008), the PIMO on-
tology and the according documentation may change, but the namespace will
not change. The namespace stays fixed to keep the necessary changes of
software implementations at a minimal level. We have adopted this practice
from other projects, which have applied it successfully. Examples are the W3C’s
XSD datatypes (the recommendation changed in 2007, the namespace did not)
or the FOAF project.
Throughout this document these ontologies and namespaces are used, also
indicating their respective versions PIMO is building on:

Task Force Ontologies Version 1.0 4

NEPOMUK 02.09.2008

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix nrl: <http://www.semanticdesktop.org/ontologies/2007/08/15/nrl#>.

@prefix nao: <http://www.semanticdesktop.org/ontologies/2007/08/15/nao#>.

@prefix pimo: <http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#>.

@prefix ncal: <http://ont.semanticdesktop.org/ontologies/2007/04/02/ncal#>.

@prefix nco: <http://ont.semanticdesktop.org/ontologies/2007/03/22/nco#>.

@prefix nfo: <http://ont.semanticdesktop.org/ontologies/2007/03/22/nfo#>.

@prefix nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>.

@prefix nmo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#>.

@prefix claudia: <http://www.example.com/people/claudia#> .

6 Creating Personal Information Models

In this section, all key elements of the ontology are presented. The order used
reflects the steps a knowledge engineer will have to take to implement this
recommendation.

6.1 The User and their Individual PIMO

As a prerequisite to create a PIMO and Things inside the PIMO, each user
needs a personal namespace. The namespace is used as a prefix for all URIs
minted for the user. Often these are namespaces using the HTTP URI scheme,
but any RDF namespace can be used. The example namespace used in this
document is http://www.example.com/people/claudia# and is abbreviated
with “claudia:”.
Users are represented as instances of the class pimo:Person. For each
instance, a new URI is generated and a few key facts are represented to identify
the user. After the user has been instantiated, details such as email addresses
are added by using terms from the NEPOMUK contact ontology, NCO. In NCO,
contact information connected to people is modeled as a complex resource,
not as a simple literal:

claudia:Claudia a pimo:Person;

rdfs:label "Claudia Stern";

nco:hasEmailAddress mailto:claudia@example.com.

mailto:claudia@example.com a nco:EmailAddress;

nco:contactMediumComment "work";

nco:emailAddress "claudia@example.com".

The second entity that needs to be represented is the Personal Information
Model of the User. It is connected to the user via the pimo:creator relation,
and the user’s namespace is added. For Claudia this is:

claudia:PIMO a pimo:PersonalInformationModel;

pimo:creator claudia:Claudia;

nao:hasDefaultNamespace "http://www.example.com/people/claudia#";

nao:hasDefaultNamespaceAbbreviation "claudia".

pimo:PersonalInformationModel is a sub-class of nrl:Ontology, allowing
more metadata to be added using NRL compliant standards. More about
NRL metadata is described in Section 11.9. We further call a this instance
of pimo:PersonalInformationModel of an individual a user-PIMO. Claudia’s
user-PIMO is claudia:PIMO. As an abbreviation, it is also correct to write
“Claudia’s PIMO” instead of “Claudia’s user-PIMO”.

Task Force Ontologies Version 1.0 5

NEPOMUK 02.09.2008

6.2 Things

The PIMO ontology defines the basic class Thing for mental concepts. Every
information element encountered in knowledge work by a user is represented as
a Thing. A Thing is a unique representation of an entity of the real world within
one user-PIMO. On the PSI of a user, a real world entity can be represented in
multiple data sources. For example, the person “Dirk Hagemann” may be author
of an e-mail, described in an address book entry, and stored in a accounting
tool, all part of the workspace of “Claudia”. One instance of pimo:Person is
created as unique Thing linking to these multiple representations, such as
shown in Figure 2.

Dirk

Address Book
name: "Dirk"
tel: "555-76123"
...

Email
from: Dirk
to: Claudia
...

Thing

Resources in
the workspace

Figure 2: Thing and Resources

An application handling a resource in the workspace can be aware that there
may be a Thing representing the resource. For example, Claudia’s e-mail client
may examine the sender of an e-mail (Dirk) and search for the pimo:Thing

that represents Dirk uniquely. Once the right Thing is found by the application,
more information about Dirk can be discovered.
This principle includes all elements (nie:InformationElement and other RDF
resources) in the user’s Personal Space of Information (PSI). For each infor-
mation element, a Thing in the user’s PIMO must be created. The information
element exists independent of the user, the same element can be stored in mul-
tiple folders or data sources on one desktop, and also on other desktops and
on the web. A Thing is the personalized view of one user on this information
element, independent of representation or storage location.
To be adequate, a PIMO of a user should contain all nameable entities known
to the user, but to be efficient, this representation should be restricted to the
minimal data needed.

6.3 Connecting Things to the User’s PIMO

In a scenario of multiple connected semantic desktops, it will frequently occur
that users import data from each other’s desktop onto their own desktop. It is
therefore important to know which resources (primarily Things, but also Classes
and Properties) were created by which user and originate from which PIMO.
For this, the property pimo:isDefinedBy is used.
Continuing the example above, this property connects the Person to the PIMO
in which it is defined. This is mandatory for every defined Thing and allows
applications to identify which elements are part of a user-PIMO and which are
not8.

8We intentionally did not only rely on NRL graphs to model the relation between the model and
instances defined by it. A graph can only contain statements, about, but not resources as such. To
model that a resource is part of a PIMO, the pimo:isDefinedBy relation is a clear representation.
Additionally, named graphs can be used to declare what statements are declared in a PIMO,

Task Force Ontologies Version 1.0 6

NEPOMUK 02.09.2008

claudia:Claudia pimo:isDefinedBy claudia:PIMO.

An isDefinedBy property is also defined in RDFS, where resources can be
connected to their defining ontologies, and is also discussed in the light of the
OWL standard9. The semantics of isDefinedBy in PIMO is based on these,
with the extension that we define it as a required property.

6.4 Identification of Things

A Thing must have an URI and should be described with properties that identify
it. Identifiers allow to analyse information elements and find occurrences of
the Thing. For example, the person “Dirk Hagemann” is represented once as
an instance of the class pimo:Person and identified using his e-mail address.
The RDF descriptions of emails and documents can then be analysed to find
resources that represent the same entity via this identifier.

The canonical Dirk

claudia:DirkHagemann a pimo:Person;

pimo:isDefinedBy claudia:PIMO;

nco:hasEmailAddress <mailto:dirk@example.com>.

An e-mail in which Dirk #2 occurs

<imap://claudia@example.com/INBOX/1> a nmo:Mail;

nmo:from <imap://claudia@example.com/INBOX/1#from>.

Dirk #2, the email sender

<imap://claudia@example.com/INBOX/1#from> a nco:Contact;

nco:hasEmailAddress <mailto:dirk@example.com>.

<mailto:dirk@example.com> a nmo:EmailAddress;

nco:emailAddress "dirk@example.com".

Dirk #3, as address book contact

<file://home/claudia/dirk.vcf#dirk> a nco:PersonContact;

nco:nameFamily "Hagemann";

nco:nameGiven "Dirk";

nco:hasEmailAddress <mailto:dirk@example.com>;

nco:photo <http://www.example.com/people/dirk/photo.jpg>.

In this example, we see that the Person Dirk appears three times in this
knowledge workspace. First, in the form of an instance of pimo:Person, as
the canonical Dirk. Second, as sender of an e-mail and third as entry in an
address book. Only one instance is the pimo:Thing representation of Dirk:
claudia:DirkHagemann. The others are information elements representing the
same entity.
To work effectively, PIMO is based on the Unique Name Assumption (UNA).
The UNA is a rule that declares two RDF resources with different URIs as
different individuals. This is common in desktop applications (for example files
with different names are different) and intuitive to grasp for users. But it is
different from the OWL ontology language where duplicate entries are common
and the UNA is not enforced. PIMO is designed for personal systems, where
an application has access to the complete model and can avoid duplicates
before creating them.
To enforce the UNA, duplicate Things must be avoided. The crucial moment
to do this is before creating a new Thing. Things can either be created by the
user manually or automatically by analysing existing native resources. In any
case, before creating a new Thing, all existing Things have to be examined if a

see 11.9
9http://www.w3.org/2007/OWL/wiki/Syntax#Declarations_and_Structural_

Consistency

Task Force Ontologies Version 1.0 7

http://www.w3.org/2007/OWL/wiki/Syntax#Declarations_and_Structural_Consistency
http://www.w3.org/2007/OWL/wiki/Syntax#Declarations_and_Structural_Consistency

NEPOMUK 02.09.2008

Group Ontologies, the Semantic Web

Public Web Resources

claudia:
dirkHagemann

"dirk@sap.com"

http://www.sap.com/
people/DirkHagemann

http://id.sap.com/id/
1650

Resources and files on Claudia's local desktop

imap://
claudia@sap.com/
INBOX#1#FROM

file://home/claudia/
dirk-vc/#dirk

nao:identifier

other
Representation

referencing

occurrence
grounding

Figure 3: Different Identification Mechanisms

Thing with a same name or same identifying properties already exists. If an
existing Thing is found, it must be reused. Immediately after creating a new
Thing, identifying properties should be set to distinguish the Thing and avoid
duplication. Section 11.1 further describes the complete process of creating
things.
In the next paragraphs, essential identifying properties are described, an
overview is given in Figure 3.
The primary identifier of a Thing is it’s URI. New URIs for Things must be
generated using the namespace of the user as prefix and then a unique local
name. Although the local name can be entirely a random string, we recommend
to include the label in the URI for readability. When minting a new URI that
clashes with an existing URI, a random element can be added to the new URI.
A URI for Claudia Stern is:

claudia:Claudia

NAO-Identifiers Existing identification schemes based on NAO should be
reused for this purpose by representing them with nao:identifier and its sub-
properties. If an identifier is found as meta-data of a native resource (usually
an nie:InformationElement), the identifier must be copied to the Thing. This
allows others to match and identify the correct Thing when encountering the
next information element. Example identifiers are nmo:messageId for e-mails,
ncal:uid for appointments, or nexif:imageUniqueID for images. Instead of
using the plain nao:identifier property, these specific properties should be
used or new sub-properties of nao:identifier created 10. In this document,
we assume that e-mail addresses can be used to identify persons.

Copy all identifiers you can find about the Thing.

claudia:DirkHagemann a pimo:Person;

nao:identifier "dirk@example.com".

Identifiers consisting of multiple RDF statements cannot be captured us-
ing nao:identifier. They are comparable to a primary key in a relational
database consisting of multiple columns. These multi-key identifiers must be
merged into one nao:identifier.

Grounding Occurrence The relation pimo:groundingOccurrence is used
to link a Thing to an nie:InformationElement that has this Thing as primary
topic. For example, the grounding for a person could be the entry in the address
book describing the person. On the other hand, an e-mail with this person
as the sender or recipient would normally not be a grounding occurrence. A
Thing represents the mental concept, the pimo:groundingOccurrence links to

10I.e. if you want to represent ISBN numbers and there is no property for them, create a new
sub-property isbn of nao:identifier.

Task Force Ontologies Version 1.0 8

NEPOMUK 02.09.2008

existing Information Elements that are handled by existing applications. This is
a key for reusing the features of these applications. The grounding occurrence
can change, for instance if a file was moved and the URI of the Information
Element changed, the grounding occurrence relation needs to be changed. A
similar case happens when a file is uploaded to a shared workspace and not
kept locally any more — all annotations of the Thing stay the same (the URI of
the Thing does not change), the Information Element changes. Multiple values
are allowed, this reflects the fact that the same Thing can be represented in
multiple applications, and dependent on the work context, the user may want
to open a different application.

Link to Dirk #3 from example above.

claudia:DirkHagemann a pimo:Person;

pimo:groundingOccurrence <file://home/claudia/dirk.vcf#dirk>.

Occurrence The relation pimo:occurrence connects a pimo:Thing with a
resource representing the same real world entity. Facts about the occurrence
are then also valid for the connected Thing. For example, if the person Dirk
appears as sender of an e-mail, then the resource identifying the sender is
an occurrence of Dirk. Based on the occurrence relation, Dirk (the unique
pimo:Person) is the sender of the given e-mail. Occurrence relations are to
be used on resources representing the same entity in a different context, but
not on resources mentioning the entity. For example, it is not valid to say that
an e-mail is an occurrence of a person, only the sender or recipient can be
occurrences of a person.
Occurrences of a Thing can be found by searching for entities with the same
identifying properties.

Link to Dirk #2 from example above,

he occurs as sender of an e-mail

claudia:DirkHagemann a pimo:Person;

pimo:occurrence <imap://claudia@example.com/INBOX/1#from>.

Besides identification, both the pimo:groundingOccurrence and the pimo:occurrence

relation have implications on data integration and affect semantic meaning of a
Thing. This will be described later in Section 7.

Referencing Occurrence A Referencing Occurrence is an indirect approach
to identification. Annotating a Thing with an information element as referencing
occurrence states that the information element contains a description of the
Thing. Its primary topic must be the Thing. The Thing is indirectly identified by
the element, when two Things in different models share the same information
element as referencing occurrence, they may be equal and could be matched.
The following description is an adaption of XTM’s subject indicators [18, 15].
The referencing occurrence is a kind of proxy for the Thing. Examples of
referencing occurrences are:

claudia:DirkHagemann a pimo:Person;

pimo:referencingOccurrence <http://www.example.com/people/DirkHagemann>.

claudia:ExampleInc a pimo:Organization;

pimo:referencingOccurrence <http://www.example.com/>;

pimo:referencingOccurrence <http://en.wikipedia.org/wiki/Example.com>.

It should contain a human readable documentation describing the concept.
The resource could be a document, ontology, video, audio, anything able to
describe to a human what the concept is about. The resource is a reference
to the concept of the Thing. A good example for a referencing occurrence is a
wikipedia article.

Task Force Ontologies Version 1.0 9

NEPOMUK 02.09.2008

A referencing occurrence describes the concept with the purpose of being
widely used by ontologies. Consequently, it is important that the document de-
scribes exactly what concept it is about and what not. Even if the author works
as accurately as possible, different people will never interpret a referencing
occurrence 100% the same way. However, the concept of referencing occur-
rences is worth using it, because it allows a shallow match of heterogenous
information models, and because there is finally no alternative to it.
It is recommended to use wikipedia URIs as objects of referencing oc-
currences. In contrast, URIs minted by DBPedia11 must be related using the
pimo:hasOtherRepresentation relation.

Other Representation The pimo:hasOtherRepresentation relation is used
to connect pimo:Things with other representations of the same Thing in other
Semantic Web ontologies. This can be the case with shared ontologies, such
as company white page systems or Semantic Social Networking websites.
The knowledge modeled should be compatible with the ontologies used by the
user. An example for such other representation is12:

claudia:DirkHagemann a pimo:Person;

pimo:hasOtherRepresentation <http://id.example.com/person/1650>.

Another example would be the city of Belfast where Claudia wants to travel to,
linked to the DBPedia entry about it:

claudia:Belfast a pimo:City;

pimo:isDefinedBy claudia:PIMO;

nao:prefLabel "Belfast";

nao:personalIdentifier "Belfast";

pimo:hasOtherRepresentation <http://dbpedia.org/resource/Belfast>;

geo:lat "54.5833333";

geo:long "-5.9333333".

The relation can be used both to identify Things by their other representations,
and to fetch more data. In this example, the latitude and longitude are actually
superfluous data, as they can be retrieved from the other representation in
DBPedia. Assuming Dirk also represents Belfast in his PIMO, but independent
from Claudia, but linking to the same DBPedia entry, algorithmically matching
their different representations is straightforward.

Other Conceptualization To map user-generated classes to classes defined
in other ontologies, the pimo:hasOtherConceptualization relation connects
classes defined in a user’s PIMO with classes defined in domain ontologies.
Classes defined in domain ontologies should be sub-classes of PIMO-upper
classes, see Section 9.
Implementations can use the pimo:hasOtherConceptualization to allow the
user and algorithms to map user–specific classes to classes defined in other
ontologies, without implying that there is a sub-class relationship.

6.5 A Complete Example

A complete example for all different identification properties can now be built
from the above annotations.

11DBPedia is a Semantic Web representation of wikipedia and provides URIs for concepts,
whereas wikipedia provides URIs for documents describing concepts. An example DBPedia URI is:
http://dbpedia.org/page/Berlin

12Using the URI scheme of the ECS University in our example domain. http://id.ecs.soton.
ac.uk/docs/

Task Force Ontologies Version 1.0 10

http://dbpedia.org/page/Berlin
http://id.ecs.soton.ac.uk/docs/
http://id.ecs.soton.ac.uk/docs/

NEPOMUK 02.09.2008

For Claudia, her co-worker Dirk Hagemann is identified and linked to occur-
rences like this:

The canonical pimo:Person Dirk,

a pimo:Thing from Claudia's PIMO

claudia:DirkHagemann a pimo:Person;

pimo:isDefinedBy claudia:PIMO;

nao:prefLabel 'Dirk Hagemann';

nao:identifier "dirk@example.com";

pimo:occurrence <imap://claudia@example.com/INBOX/1#from>;

pimo:groundingOccurrence <file://home/claudia/dirk.vcf#dirk>;

pimo:referencingOccurrence <http://www.example.com/people/DirkHagemann>;

pimo:hasOtherRepresentation <http://id.example.com/person/1650>.

An e-mail in which Dirk #2 occurs

<imap://claudia@example.com/INBOX/1> a nmo:Mail;

nmo:from <imap://claudia@example.com/INBOX/1#from>.

Dirk #2, as email sender

<imap://claudia@example.com/INBOX/1#from> a nco:Contact;

nco:hasEmailAddress <mailto:dirk@example.com>.

<mailto:dirk@example.com> a nmo:EmailAddress;

nco:emailAddress "dirk@example.com".

Dirk #3, as address book contact

<file://home/claudia/dirk.vcf#dirk> a nco:PersonContact;

nco:nameFamily "Hagemann";

nco:nameGiven "Dirk";

nco:hasEmailAddress <mailto:dirk@example.com>;

nco:photo <http://www.example.com/people/dirk/photo.jpg>.

This allows implementations to:

• identify the Thing when found occurring in documents,

• open a grounding occurrence to see the Thing within an existing desktop
application (i.e. the address book entry for a person),

• match this Thing with other representations via the same referencing
occurrence,

• use the other representation from the company’s white pages to show
additional data about the Thing.

The pimo:occurrence link is the generic basis, pimo:groundingOccurrence
and pimo:hasOtherRepresentation are sub-properties of it. This data should
be generated automatically and unsupervised. Adding identifying properties to
a Thing helps to find more occurrences and therefore more information about
it.

6.6 Labels and Names of Things

To label Things, we recommend the NEPOMUK Annotation Ontology (NAO)
vocabulary. It defines properties for a preferred label, multiple alternative labels,
and a personal identifier.

nao:prefLabel A preferred label for a Thing. This property must be applied
to every instance of pimo:Thing. It can be used by applications to represent
the Thing with a textual label and should be human-readable. There must

Task Force Ontologies Version 1.0 11

NEPOMUK 02.09.2008

only be one prefLabel per Thing (mincardinality and maxcardinality should be
one)13.

nao:personalIdentifier Defines a unique personal label for a Thing. The
label must be unique within the scope of a user. If both are used, nao:personalIdentifier
and nao:prefLabel of a resource should have the same value. Note that it is
not a sub-property of nao:prefLabel, both have to be set explicitly.
Personal identifiers are the recommended way to label and identify Things.
As they are unique and human-readable, they may be used for multiple appli-
cation scenarios such as wikis, tagging, or matching terms found in free-text.

nao:altLabel An alternative label alongside the preferred label for a Thing.
These are alternative spellings, translations, nick-names. Implementations can
use these labels to find Things when the user enters a text in a search box or
when analysing free text. If a Thing has occurrences, the labels of occurrences
should be copied as alternative labels to the thing.
In combination, these labelling techniques allow applications to clearly label
Things in user interfaces but also to lookup for Things based on alternative
names. For our example, these are:

claudia:DirkHagemann a pimo:Person;

preferred label when shown

nao:prefLabel 'Dirk Hagemann';

a nickname for Dirk

nao:altLabel "hacki";

a common misspelling

nao:altLabel "Dirck Hagemann";

the personal identifier

nao:personalIdentifier "DirkHagemann".

Additionally, visual cues (icons, images, thumbnails) can be attached by using
NAO symbol relations:

• nao:hasSymbol

• nao:prefSymbol

• nao:altSymbol

6.7 Textual description of Things

To describe Things with a free-text, the simple nao:description property
should be used. This allows users to add a (possibly searchable) description
of the Thing in a simple way. The description string value should contain no
format markup but be a plain text.
For more complex free-text descriptions of Things, the property pimo:wikiText

is reserved. Formatting (font-weight, italics) and linking to other pages is
supported in this property, implementers may use the Wiki Interchange Format
14 as syntax.

13These restrictions are not explicitly noted in the RDF description of the property, as NRL does
not support property restrictions for classes.

14http://semanticweb.org/wiki/Wiki_Interchange_Format

Task Force Ontologies Version 1.0 12

http://semanticweb.org/wiki/Wiki_Interchange_Format

NEPOMUK 02.09.2008

6.8 Rating and Ranking Things

Ratings of Things can be expressed using nao:numericRating. For numer-
icRating, the range of values must be within [0..1] (inclusive). Applications
may partition the values into discrete ratings (such as 0.2, 0.4, 0.6, 0.8, 1.0 to
represent the semantics of “5 star ratings”).
The rating values may and should be used for ranking of Things and filtering. A
populated PIMO contains thousands of Things, user interfaces should use the
nao:numericRating values to filter out low-ranked resources and highlight high-
ranked resources. Implementations can set the nao:numericRating values
automatically to computed values.

6.9 Modelling Time

In PIMO, no special treatment of time is modeled. We are aware that repre-
senting points in time, durations, and other periods of time is an important
aspect of ontologies. We recommend to use the XML Schema Datatypes
to represent time. There, ISO 8601 is recommended. Timezones must be
handled according to this standard, encoded inside the literal value15.
Periods of time can be represented using sub-classes of the abstract class
pimo:ProcessConcept which represents lasting processes such as events or
projects. For durations that last a number of days or months, we recommend to
use the standardized XML datatypes16:

• xs:dayTimeDuration for durations measured in days, hours, and min-
utes.

• xs:yearMonthDuration for durations measured in months and years

Implementers are free to use either the XSD types or sub-classes of pimo:ProcessConcept.
There have been issues with other notations of duration and therefore the W3C
Semantic Web Best Practices and Deployment Group published a note17 to
restrict durations to these values.

6.10 Representing Modification and Change Dates

The change and creation dates of Things are important metadata for personal
information management applications. Knowing about recent changes is an
important cue for users to retrieve documents. Many applications offer the
feature to show recent changes or filter by them. Consequently, it has to be
straightforward, simple, and fast to query for the modification dates.
The NAO properties nao:created, nao:modified, and nao:lastModified

shall be used to track the change dates of Things. Creation and modifica-
tion allow only one, modification allows multiple date values. Created and
lastModified values must be set for each Thing, at least one modified value
must be set. These values are intended for resources of type pimo:Thing,
pimo:Association, rdfs:Class, and rdf:Property when created by the user.

15For a detailed representation of time events, refer to the NIE documentation, where timezones
are discussed (http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/#sec-tzd).
NIE represents time using the NcalDateTime class and its properties date, dateTime, ncalTimezone.
Timezones are represented using a Timezone class, that is inspired by RFC 2445.

16The XS namespace is http://www.w3.org/2001/XMLSchema, but the two duration
datatypes are defined in the XPath recommendation in 2007, see http://www.w3.org/TR/

xpath-functions/#dt-dayTimeDuration
17http://www.w3.org/TR/swbp-xsch-datatypes/#section-duration Since XPath 2.0 has

become a W3C recommendation in January 2007, this note is partly obsoleted.

Task Force Ontologies Version 1.0 13

http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/#sec-tzd
http://www.w3.org/TR/xpath-functions/#dt-dayTimeDuration
http://www.w3.org/TR/xpath-functions/#dt-dayTimeDuration
http://www.w3.org/TR/swbp-xsch-datatypes/#section-duration

NEPOMUK 02.09.2008

Example:

Represent modification dates of a Thing

claudia:DirkHagemann

nao:created "2007-10-26T15:23:01";

nao:modified "2007-10-26T15:23:01";

nao:modified "2007-10-29T08:04:30";

nao:lastModified "2007-10-29T08:04:30".

The semantics of these dates is that the description of the Thing has changed,
facts about the Thing have been added, removed, or modified. Changes to
pimo:objectProperty (pimo:related, pimo:hasTopic, etc.) or pimo:datatypeProperty
(name, address, label, etc.) imply such a modification. Included are also
changes to the labels (nao:prefLabel, nao:altLabel, nao:personalIdentifier).
Modification of any other statement (such as pimo:definedBy, nao:modified)
do not imply a modification nor a change of dates. As current RDF stores
a priori do not support automatic tracking of changes, applications have to
implement housekeeping of these dates, or use services for tracking. 18

6.11 Setting the Class of a Thing

All Things are of type pimo:Thing or one of its sub-classes. The PIMO ontology
itself defines several sub-classes such as pimo:Person or pimo:Organization.
If these are not specific enough, the user can either create new sub-classes
manually (see Section 6.17), or import group-level ontologies (Section 9).
As a rule of thumb, the question to be answered by assigning the class is “What
is this Thing?”. In comparison to OWL, where classes are commonly based on
the properties of the object (“vegetarians are entities not eating flesh”) , classes
represent the type (the nature) alone.
It is also recommended to only use one explicit class for a Thing. The wish
to add multiple classes is often an indication that some classes can be better
modeled using relations. For example, it is recommended to use a datatype
property “is this person a vegetarian? yes or no” and explicitly set it instead of
assigning a sub-class of Person called Vegetarian. If Things with two classes
are needed (for example, if something is both a “Car” and a “Locatable”) then
the preferred way is to change the class model (make Car a subclass of
Locatable or create a new class “LocatableCar” with both as superclass) than
to add both types to one Thing. Nevertheless, it is not forbidden to add two
types.
When a Thing has occurrences that are expressed in the NEPOMUK Infor-
mation Element ontology (NIE), suitable mappings from NIE classes to PIMO
classes are available in a mapping file 19.

6.12 The PIMO-upper ontology

PIMO contains an upper ontology for basic concepts in Personal Information
Management (PIM): Person, Location, Event, Organization, Topic, Document,
Time. They are modeled to answer basic questions about a Thing:

• Who is associated? Person
18The value of lastModified is redundant as it could be computed by sorting the modified dates

during query time, but this is not possible without nested SPARQL queries, a max() function, and
grouping, none of these part of the SPARQL standard. The stores that support such non-standard
operations still need time to compute the value. As the last modification date is very important for
applications to assist users finding information, the redundancy is intended.

19http://www.semanticdesktop.org/ontologies/2007/11/01/nietopimomapping.rdf

Task Force Ontologies Version 1.0 14

http://www.semanticdesktop.org/ontologies/2007/11/01/nietopimomapping.rdf

NEPOMUK 02.09.2008

• Where is this? Location

• When is it? Time

• What is it about? Topic

The classes are the foundational part of PIMO in the Upper-Level Layer of the
overall NEPOMUK ontologies as shown in 1. This level serves as integration
point for PIM applications, in the broader perspective of the Semantic Desktop,
the classes can serve as upper classes for group– and domain–level ontologies
(see Sect. 9).

6.13 Classes in PIMO-Upper

The classes have been defined based on related ontologies, a user study, and
several software prototypes that have been evaluated. Figure 4 gives a rough
overview of the available classes.

Thing The root class of the upper ontology. Every entity that can be in the
direct attention of the user is a Thing.

Collection A collection of Things, independent of their class. The items in the
collection share a common property. Several usability studies showed
that collections are important for PIM.

Group A group of Persons. They are connected to each other by sharing a
common attribute, for example they all belong to the same organization
or have a common interest.

Location A physical location. Sub-classes are modeled for the most common
locations humans work in: Building, City, Country, Room, State. This
selection is intended to be applicable cross-cultural and cross-domain.
City is a prototype that can be further refined for villages, etc.

LogicalMediaType MediaConcepts are logical media types (e.g., a book, a
contract, a promotional video, a todo list). The user can create new
logical media types dependent on their domain: a salesman will need
MarketingFlyer, Offer, Invoice while a student might create Report, Thesis
and Homework.

Organization An administrative and functional structure (such as a business
or a political party).

Person Represents a person. Either living, dead, real or imaginary. In this
regards, similar to foaf:Person.

ProcessConcept Concepts that relate to a series of actions or operations
conducing to an end. Sub-classes are defined for Event, SocialEvent,
Meeting, Project, and Task.

Topic A topic is the subject of a discussion or document. Topics are distin-
guished from Things in their taxonomic nature, examples are scientific
areas.

These classes are intentionally kept generic. More specialized ontologies
should be used for certain domains of application, see Section 9. The classes
of these ontologies are then sub-classes of upper ontology classes.

Task Force Ontologies Version 1.0 15

NEPOMUK 02.09.2008

Figure 4: Classes in PIMO-Upper

Task Force Ontologies Version 1.0 16

NEPOMUK 02.09.2008

6.14 Describing Things with Attributes and Relations

Conventional RDF statements are used to describe Things. Predicates have to
be defined as rdfs:Properties according to the NRL standard. Alternatively,
it is also possible to use properties from other modeling languages like OWL or
RDFS although we do not encourage this without a proper mapping of existing
ontologies to PIMO (see 9).
Properties that are intended to be editable and visible to end users must be
sub-properties of either pimo:datatypeProperty or pimo:objectProperty.
Many NIE and NAO properties can be used from PIMO Things, see Sec-
tion 11.10.

6.15 Generic Properties in PIMO-Upper

The PIMO-upper ontology contains basic relations between Things and a few
core attributes for identifying them (described above in Sect. 6.4). These
sub-properties of pimo:objectProperty are:

pimo:related is the most generic relation, giving no further indication how
Things may be related. Related is defined to have itself as inverse prop-
erty, it is indirectly a nrl:SymmetricProperty, but does not inherit this
attribute to sub-properties. Sub-properties can be asymmetric, depending
on the inverse-of relation they define.

pimo:hasPart and pimo:partOf model partitive relations. They are inverse.
Neither is transitive, because part-of relations used for modelling in the
domain of Personal Information Management are vague due to the many
contexts of interpretation (a hotel may be part of a trip plan, a trip plan
part of a project, but this does not indicate the hotel to be part of the
project).

pimo:hasTopic and pimo:isTopic connect a Thing of interest with a Thing
reflecting about it. For example, a meeting can have a project as a topic,
or a meeting has a document as a topic, when the goal of the meeting is to
discuss the document. After the meeting, the meeting minutes are a new
Thing having the meeting as a topic. This is not restricted to meetings
but also an organization or a person can have a certain technology as
a topic to express that they are working on the topic. The relation is not
transitive, not symmetric. It is not asymmetric because a document A
may have document B as topic, and B also A.

Implementers may use these generic properties directly, or create sub-properties
of them or sub-properties of the more generic pimo:objectProperty. The main
reason to have the generic properties is the semantic meaning of the relations,
which can help to create user interfaces or model domains. Ontology authors
can ask themselves “does a new property model a part-of relation or not, does
it assign a thing with a topic, or is it a generic relation?” and then extend one of
the generic properties.
For these generic relations, specialized sub-properties are defined when used
on specific classes in the PIMO upper ontology.

6.16 Refined properties in PIMO-Upper

Additional to the above relations, semantically interesting relations between
PIMO upper classes are modeled. Especially those which can be used as
symmetric or transitive relations for inference.

Task Force Ontologies Version 1.0 17

NEPOMUK 02.09.2008

pimo:narrower and pimo:broader relate Topics to each other. As Topics
are an important mean to organize document collections based on a
taxonomy, these two predicates are defined. They are inverse of each
other and transitive.

pimo:hasOrganizationMember and pimo:isOrganizationMemberOf are rela-
tions connecting a Person to an Organization.

pimo:hasLocation and pimo:isLocationOf relate a locatable Thing with its
Location. Locatable is an abstract sub-class of Thing.

pimo:containsLocation and pimo:locatedWithin relate two locations within
each other. Note that for geographic locations representing a physical
space, inclusion is transitive.

6.17 Creating Personalized Classes and Properties

The predefined classes and properties are intended as a generic basis to be
extended. The user can always create new classes and property types, or
existing ontologies can be imported (see Section 8). A number of requirements
apply:

• The superclass has to be pimo:Thing or a sub-class.

• The class has to be labelled with nao:prefLabel.

• The class has to be related to the user’s PIMO with pimo:isDefinedBy.

Similarly for custom properties:

• The property has to be labelled with nao:prefLabel.

• The property has to be related to the user’s PIMO with pimo:isDefinedBy.

For properties that relate two things, the following applies:

• The property must be a sub-property of pimo:objectProperty (either
directly or indirectly via inference).

• The super-property should be one of pimo:related, pimo:hasTopic,
pimo:isTopicOf, pimo:hasPart, or pimo:partOf.

• An inverse property must be defined. Inverse properties define the
semantic meaning in both ways, which is required for user interfaces
showing relations.

For custom properties that have a literal or datatype as range the following
applies:

• They must be a sub-property of pimo:datatypeProperty.

• Inverse properties should not be defined (as Literals cannot be subject of
statements, inverse does not apply anyway).

For all custom-created properties and classes, modification dates must be set.

6.18 Collections of Things

In Personal Information Management, grouping multiple Things into one collec-
tion is a crucial feature. Today’s hierarchical file systems are a good example:

Task Force Ontologies Version 1.0 18

NEPOMUK 02.09.2008

a folder can be created to contain multiple elements. Later, actions on this
folder, such as compressing it, or deleting it are supported. The generic has
Part relation provides the semantics of putting a Thing into another Thing. For
usability reasons, we also provide a class pimo:Collection to be used for
generic collections of multiple items.
Applications that want to present the complex possibilities of PIMO in a simpler
way can offer collections. First, an instance of the class pimo:Collection is
created. Then, elements are added to the collection using the pimo:hasPart

relation. A typical application of collections is the list of “Favourites” containing
recently used and important resources.
Collections are unordered, the ordering of items inside the collection can be
done using alphabetical order, time, geographic location (if they are locatable),
or type.
Tags are another simplification, described below in Section 11.7.

6.19 Modeling Associations and Roles in PIMO

Often there is a need to add meta-data about a relation, for example the date
of creation of a relation. In RDF, this is typically done using reification, and then
adding meta-data about the reified Statement using an instance of the class
rdf:Statement. A problem with reification is that when using the generic class
rdf:Statement to represent it, there are no guidelines which properties are
now suitable to annotate the statement. More precise sub-classes of Statement
would solve this. Another problem is that n-ary relations cannot be expressed
with triple statements.
In PIMO, Associations are used to add metadata about relations and to create
n-ary relations. They are entities representing the relation of multiple Things
with each other. Each Thing part of an Association is related to the association
using the pimo:associationMember property or more precise sub-properties
of it.
As an example, the fact that Claudia attended a meeting can be expressed
using the pimo:Attendee role.

claudia:AttendsInitialMeetinginBelfast a pimo:Attendee;

pimo:attendingMeeting claudia:InitialMeetinginBelfast;

pimo:roleHolder claudia:Claudia.

Here, the class pimo:Attendee is a sub-class of pimo:Association and repre-
sents the association as such (“this is an association between a person and a
meeting”). The two relations used are sub-properties of pimo:associationMember
and identify the two Things to relate, the specific relations determine the role
taken by each Thing. New sub-classes of association can be created when
needed, also new sub-properties of pimo:associationMember for more spe-
cific roles.
Associations are elements of a user’s PIMO and must be connected to the
user’s PIMO with a pimo:isDefinedBy relation. Modification dates are to be
handled the same way as with Things (see Section 6.10).

7 Connecting PIMO to Information Elements

In the last section, the Things created within a user-PIMO were described.
They are to be unique, described with defined ontologies, and ought to be
identified well. The next step is to connect these to the files, e-mails, and
other Information Elements which exist in the user’s PSI. These are ambiguous,

Task Force Ontologies Version 1.0 19

NEPOMUK 02.09.2008

described in various ontologies, and in general more chaotic when compared
to the user-PIMO. The crucial point is to use Things as organization scheme to
classify and integrate existing data found in a PSI.
The first step is to connect Things to Information Elements that represent
them. As described above (Section 6.4), the pimo:groundingOccurrence and
pimo:occurrence relations are to be used to connect them. This connec-
tion has the semantics of a unification — both the Thing and the Information
Element represent the same real-world entity. But the Thing is the unique,
static representation that should be used to annotate the entity. Implemen-
tations should not allow the users to annotate Information Elements directly,
instead it is recommended to connect the Information Element to a Thing using
pimo:groundingOccurrence and then annotate the Thing. The rationale is that
Information Elements can change their URI, be deleted or moved, and then the
annotations may be disconnected from the described resource.
Creating a Thing for each annotated document will result in vast amounts
of instances in the sub-classes of pimo:Document, as users can likely have
access to thousands (sometimes millions) of documents. To navigate effectively
through such large structures, PIMO Topics can be used to annotate documents
using the pimo:hasTopic relation.
How to annotate documents using PIMO is described in Section 11.7.

7.1 Connecting Things and Classes to Folders

Things can also be connected to folders in the file-system to express that
these folders contain information related to the thing. Use the pimo:hasFolder

relation to connect a Thing or a Class with a folder. The semantic meaning of
this relation is not formally restricted but open to be used in various ways. For
folders connected to Things, it is recommended to interpret the content of the
folder as “having the Thing as topic”. Implementors may add a pimo:hasTopic

relation between the Things inside the folder and the Thing.
For folders connected to Classes, it is recommended to interpret the content
of the folder as “being an instance of the Class”. Implementors may add a
rdf:type relation between the Things inside the folder and the Class.
In all cases, files or other information elements in folders have to be represented
as Things first, before further annotation (see Section 11.1).
The property pimo:hasFolder can be used by implementors to suggest folders
for information elements — if an information element is annotated with a
pimo:hasTopic relation to a topic that is connected to a folder, this is an
indication to move the element to the folder, if needed.

7.2 Integrating Facts about Things

The unification of multiple Information Elements into one Thing is also on the
level of facts, RDF statements. To answer the question “when did I last com-
municate with people shown on this picture” can only be answered when facts
from multiple sources (e-mails, photos, photo annotations and the user-PIMO)
can be queried as one model. The statements about the Information Elements
connected to a Thing via pimo:groundingOccurrence and pimo:occurrence

can be superimposed to the Thing. The exact rules are given in Section 12.1
and directions how to use them are in Section 11.6.
Through this process, a view on the data is generated. The user can get an
overview of all existing data — in an integrated way — and then drill down into
specific occurrences. In this view, it is possible that a Thing has multiple classes
(as rdf:type), one from the level of PIMO ontologies and others from the inte-

Task Force Ontologies Version 1.0 20

NEPOMUK 02.09.2008

grated Information Elements. In the example given in Section 11.6, Dirk Hage-
mann is inferred to be both a pimo:Person and a pimo:PersonContact. The
two classes are not required to be sub-classes of each other. To get a coherent
and meaningful view, the class of the InformationElement (or related resource)
may be related to a PIMO class using the pimo:hasOtherConceptualization
relation, as described later in Section 9.
It is not required that the used ontologies are formally aligned and mapped.
Rather, it is assumed that the user will be able to interpret the statements
based on his knowledge about the data in his PSI.
The details about the integration of facts are given in Section 11.6 on unification.

8 PIMO-group level: Group and Domain ontologies

The upper (foundational) level of PIMO just makes a few, basic ontological state-
ments about Things which exist on a Semantic Desktop, i. e., Things which are
essential in a knowledge worker’s mental model. In order to avoid a cold start
problem 20 with PIMO-based applications, more ontologies defining concepts
shared within groups or modeling domains are needed. The user’s company
and its organizational structure may be such a domain, or a shared public
ontology. Classes are refinements of PIMO-Upper, allowing an integration of
various domain ontologies via the upper layer.
In the following section, recommendations are given how to model group and
domain level ontologies.

9 Extending PIMO

Out of the box, PIMO is kept sufficiently simple and only contains relatively few
classes and properties. This was done in order to ensure that the ontology
is general enough to apply to almost any relevant domain. However, as soon
as the set of pre-existing classes and properties becomes too narrow and
confining, it is a very simple matter to extend PIMO and add domain-specific
extensions, or map external ontologies onto PIMO. E.g., PIMO can easily be
extended to express the organizational structure of the user’s workplace, a
biological classification system, or to include a PIMO-version of the BibTeX
vocabulary. These domain ontologies differ from personalized classes and
properties (see Section 6.17) by the fact that they are not created by the user,
but created by a third party for multiple users.

9.1 Refining Elements of PIMO-upper

Creating group–level ontologies is a simple matter of defining new sub-
classes of PIMO-upper classes (see Sect. 6.13) or sub-classing InformationElement

classes. If needed, new properties can also be added, which apply to the new
classes via domain or range. Importing created group–level ontologies into a
user’s PIMO is described in the next Section (10).

Classes As an example, you may work in the domain of teaching and training,
and therefore want to extend PIMO with elements specific for this domain, such

20The problem of cold starts is well known in knowledge-based systems: In the beginning a
system, such as a shell, has little or no information and therefore doesn’t seem to be useful to a
new user. Consequently, they are not motivated to invest in using and feeding the system with new
information, which again would be a prerequisite for it to be more useful. Enter vicious cycle...

Task Force Ontologies Version 1.0 21

NEPOMUK 02.09.2008

as courses, lessons, teachers or students. In this case, you would look for
existing PIMO-upper classes which could be considered generalizations of your
new classes. E.g., a course would be a sub-class of pimo:ProcessConcept,
training lessons could be a sub-class of pimo:Meeting, teachers and students
could be sub-classes of pimo:Person (or pimo:Role — role-based modeling is
discussed in Sect. 6.19) and training material a sub-class of pimo:Document.
Since all pre-existing PIMO-upper classes derive from pimo:Thing, all your
new classes automatically do as well (except for roles: pimo:Role is not a
sub-class of pimo:Thing).
There could also be cases where no existing PIMO-upper class seems to
apply to your new class — in this case, the new class would directly derive
from pimo:Thing. Consider, e.g., that you want to include the concept of
grades in your PIMO. There isn’t really a good pre-existing superclass for
grades in PIMO-upper, so your new Grade class would be a direct sub-class of
pimo:Thing.
Even if there might be a potential superclass, it may be wise to postpone this
decision if one isn’t completely sure, and instead just sub-class pimo:Thing. It
is always easier to add a superclass relationship later, rather than make a bad
decision now and then have to deal with incorrect data at a later stage.
If needed, the new classes can also have sub-class relationships into other on-
tologies, such as other NIE-based ontologies or completely different ontologies
such as WordNet21, SUMO22, or Dolce23.

Instances In some cases, you will also want to add instances of classes
to the ontology you are integrating with PIMO. This makes sense if those
instances are shared and used among a many users. An example are actual
grades that a teacher might gives their students, such as grades from A–F.
Each such grade (teaching:GradeA, teaching:GradeB, etc.) is an instance
of the class Grade, but since those instances will be used by all teachers and
students, they can become part of the teaching ontology. Similarly, if a school
decides to introduce the teaching ontology, they might include instances for all
their teachers, students, classes, courses, etc.

Properties New properties can then refer to the new classes via domain
or range and thus further specify them. Examples are the relation between
courses and teachers/instructors (e.g., teachesCourse(Teacher, Course)) or
between course material and a course (e.g. courseMaterialFor(CourseMaterial,
Course)). This example is illustrated graphically in Fig. 5, as well in N3 source
code in Fig. 6. This approach is a typical example of how to integrate
domain ontologies for specific application areas into PIMO.
There are some general guidelines for introducing new properties:

• Properties which connect two pimo:Things (or sub-classes) should be de-
fined as sub-properties of pimo:related, pimo:hasTopic, pimo:isTopicOf,
pimo:hasPart, or pimo:partOf (see Sect. 6.15). By relating new, spe-
cialized properties to the more generic PIMO properties, the new ontology
can integrate better with existing desktop environment. When not ex-
tending the generic properties, at least new properties should exted
pimo:objectProperty.

• All new object-properties must define an inverse property, as required in
Section 6.17.

• Identifying properties (such as a name) that have domain pimo:Thing and
a literal range should be mapped as sub-properties of nao:identifier.

21http://wordnet.princeton.edu/
22http://www.ontologyportal.org/
23http://www.loa-cnr.it/DOLCE.html

Task Force Ontologies Version 1.0 22

http://wordnet.princeton.edu/
http://www.ontologyportal.org/
http://www.loa-cnr.it/DOLCE.html

NEPOMUK 02.09.2008

pimo:
Person

pimo:
Process
Concept

pimo:
Document

pimo:
Meeting

pimo:
Thing

teaching:
Lesson

teaching:
Course
Material

teaching:
Course

teaching:
Teacher

teaching:
Student

(Relation simplified)

teaching:
teachesCourse

teaching:
attendsCourse

te
ac

hi
ng

:
co

ur
se

M
at

er
ia

lF
or

teaching:
Grade

teaching:
GradeA

teaching:
GradeB

instance of

subclass of

Figure 5: Extending PIMO with new classes, properties and instances for the
domain of teaching

An example is give in Fig. 8.

• Some new properties may be defined as sub-properties of pimo:referencingOccurrence
(see Sect. 6.4). This is true for all object properties (i.e., properties which
have a resource range and not a literal range) which describe or identify
the subject in an unambiguous way. In other words, the object resource
exclusively describes the subject. A typical example is foaf:homepage:
two different people would most likely not have the same homepage
(ignoring exceptions such as family homepages). If, however, we come
across two different RDF resources which have the same foaf:homepage,
we can assume that they describe the same real-life person.

• A frequent situation in Semantic Web and Semantic Desktop scenar-
ios is that the same real-life object (i.e., a person, country, project,
etc.) is defined as a resource in many different ontologies. The PIMO
property pimo:hasOtherRepresentation is used in such cases. If your
new ontology contains a property which expresses a similar (more spe-
cific) relation between resources, then it should be a sub-property of
pimo:hasOtherRepresentation (see Sect. 6.4). In the vanilla SW world,
a similar property is rdfs:seeAlso.

Inheritance Sub-classing any class from PIMO (whether it be existing classes
from PIMO-upper or classes that have been added later) also means that the
new sub-class can be used with the same properties that have been defined
with its superclass. Remember that NRL has a closed world assumption, and
not an open world assumption, as RDFS traditionally has. In NRL24, ontologies
can be used to validate statements. E.g., if the property name(pimo:Person,

String) has been defined, and if we define our new class teaching:Student

to be a sub-class of pimo:Person, then this will allow us to use name with
instances of Student as well - an NRL validator will permit this, because
all instances of Student are also instances of Person. An example of this
is shown in Fig. 7: this concept is very similar to the idea of inheritance in
object-orientation, even though strictly speaking it is not the same.

24http://www.semanticdesktop.org/ontologies/nrl/

Task Force Ontologies Version 1.0 23

http://www.semanticdesktop.org/ontologies/nrl/

NEPOMUK 02.09.2008

new classes:

teaching:Grade a rdfs:Class;

rdfs:subClassOf pimo:Thing.

teaching:Student a rdfs:Class;

rdfs:subClassOf pimo:Person.

teaching:Teacher a rdfs:Class;

rdfs:subClassOf pimo:Person.

teaching:CourseMaterial a rdfs:Class;

rdfs:subClassOf pimo:Document.

teaching:Course a rdfs:Class;

rdfs:subClassOf pimo:ProcessConcept.

teaching:Lesson a rdfs:Class;

rdfs:subClassOf pimo:Meeting.

new properties and their inverse:

teaching:courseMaterialFor a rdf:Property;

rdfs:subPropertyOf pimo:partOf;

rdfs:domain teaching:CourseMaterial;

rdfs:range teaching:Course;

nrl:inverseProperty teaching:hasCourseMaterial.

teaching:hasCourseMaterial;

rdfs:subPropertyOf pimo:hasPart;

rdfs:domain teaching:Course;

rdfs:range teaching:CourseMaterial;

nrl:inverseProperty teaching:courseMaterialFor.

teaching:teachesCourse a rdf:Property;

rdfs:subPropertyOf pimo:related;

rdfs:domain teaching:Teacher;

rdfs:range teaching:Course;

nrl:inverseProperty teaching:taughtBy.

teaching:taughtBy a rdf:Property;

rdfs:subPropertyOf pimo:related;

rdfs:domain teaching:Course;

rdfs:range teaching:Teacher;

nrl:inverseProperty teaching:teachesCourse.

teaching:attendsCourse a rdf:Property;

rdfs:subPropertyOf pimo:related;

rdfs:domain teaching:Student;

rdfs:range teaching:Course;

nrl:inverseProperty teaching:attendeeStudent.

teaching:attendeeStudent a rdf:Property;

rdfs:subPropertyOf pimo:related;

rdfs:domain teaching:Course;

rdfs:range teaching:Student;

nrl:inverseProperty teaching:attendsCourse.

new instances:

teaching:GradeA a teaching:Grade;

nao:prefLabel "A".

teaching:GradeB a teaching:Grade;

nao:prefLabel "B".

...

Figure 6: Extending PIMO with new classes, properties and instances for the
domain of teaching — N3 code

Task Force Ontologies Version 1.0 24

NEPOMUK 02.09.2008

pimo:name a rdf:Property;

rdfs:Domain pimo:Person;

rdfs:Domain rdfs:Literal.

teaching:Student a rdfs:Class;

rdfs:subClassOf pimo:Person.

knud a teaching:Student;

pimo:name "Knud Möller".

Figure 7: “Inheritance” of properties

9.2 Markup for the new ontology

The teaching ontology still needs to be defined as proper NRL ontology to be
usable with PIMO. The ontology must to be identified via its URI and the author
of the ontology can be added as nao:creator.

teaching:TeachingOntology a nrl:Ontology;

nao:creator teaching:TeachingOntologyCreator.

teaching:TeachingOntologyCreator a nao:Party;

rdfs:label "Knud Möller".

9.3 Information Elements

An important feature of the NEPOMUK ontology architecture is the fact that
it is divided into two tiers: the PIMO tier and the Native Structures tier, as
defined in the NEPOMUK Information Element Ontology (NIE)25 and its sub-
ontologies, such as the NEPOMUK File Ontology (NFO)26. While the former
covers the internal mental model of a user or an organization (people, events,
projects, etc.), the latter covers the physical representations of data (address
book entries, calendar entries, files, etc.). Obviously, there are numerous
connections between the tiers: people are represented by address book entries,
events appear in the calendar, projects have files associated to them.
Whenever classes that are introduced to PIMO have a physical representation
on the user’s desktop, a connection to NIE must be modeled as well. Consider
the example of the teaching ontology above: Such an ontology will contain
classes for Things like exams and essays. Those classes belong to the PIMO
tier. Their representation within the computer — e.g., as text files — belongs
to the native structures tier. Or, in a more complex case, the new ontology
could very well come with a specialized application, such as a Training Course
Manager, where users can assign attendees to trainings, etc. In this case,
people and courses (PIMO tier) would be represented by the application as
application-specific data structures or information elements (native structures
tier). In both cases a link from the new PIMO classes to the information
elements represented with NIE is required to fully exploit the possibilities of the
semantic desktop.
As a second example, we can consider an ontology for scientific publica-
tions. This ontology (which would probably be based on BibTEX), would
come with classes such as Article or Book and relations between them like
bookContainsArticle or hasAuthor. For the integration into PIMO, Article

25http://www.semanticdesktop.org/ontologies/nie/
26http://www.semanticdesktop.org/ontologies/nfo/

Task Force Ontologies Version 1.0 25

http://www.semanticdesktop.org/ontologies/nie/
http://www.semanticdesktop.org/ontologies/nfo/

NEPOMUK 02.09.2008

bibtex:Article a rdfs:Class;

PIMO tier: interpreted by the user as nie:Document

rdfs:subClassOf pimo:Document;

native structures tier: interpreted by the system as nfo:TextDocument

rdfs:subClassOf nfo:TextDocument.

bibtex:hasAuthor a rdf:Property;

rdfs:subPropertyOf pimo:related;

rdfs:subPropertyOf nfo:creator;

rdfs:domain bibtex:Article;

rdfs:range pimo:Person.

bibtex:hasLCCN a rdf:Property;

rdfs:subPropertyOf nao:identifier; \# add an identifier

rdfs:domain bibtex:Article.

Figure 8: A BibTEX-based PIMO extension for scientific publications

would most likely become a sub-class of pimo:Document. Documents have two
types: one which anchors them in the PIMO tier, and one which anchors them
in the native structures tier. The pimo:LogicalMediaType (and its sub-classes,
e.g., pimo:Document) captures how a document is interpreted by the user and
belongs to the PIMO tier. Logical media types can be contracts, invoices, as-
signments, invitations, law texts, etc. The other type, which is the nfo:Document

type, captures how the system interprets the document, and belongs to the
native structures tier. This is the physical document type as modeled by NIE.
Instances of a logical media type can have various representations in the na-
tive structures tier: for example, a text interpreted as an invoice by the user
can either be an nfo:PlainTextDocument or an nfo:PaginatedTextDocument.
Vice-versa, one physical type can be used to represent both an invitation or an
invoice, which are different logical media types. Keeping this this separation of
content and representation in mind, one can model concrete documents having
two types, one on each tier.

9.4 Extension by Sub-classing from External Classes

Another possibility is extending existing PIMO-upper classes by sub-
classing them from external classes. This is discouraged. For example,
if the class pimo:Person was defined a sub-class of nco:PersonContact and
pimo:Organization a sub-class of nco:OrganizationContact, all instances
of these classes would automatically be inferred to be pimo:Things. However,
those instances would probably not have some of the properties required by
the Thing defined, which would render the imported data invalid. Similarly,
when a mapped class X has cardinality restrictions on its properties (such as
required properties), adding X as new superclass to an existing PIMO class
can render the instances of the PIMO class invalid.

9.5 Summary

The very condensed summary to extending PIMO and mapping frome existing
ontologies to PIMO is the following:

• Make classes sub-classes of PIMO-upper classes.

• Make properties sub-properties of PIMO-upper properties.

Task Force Ontologies Version 1.0 26

NEPOMUK 02.09.2008

• Relations: Links between Things have to be browseable, properties
should have inverse relations defined (see [16])

• Extensibility: Users are free to add new relation types and new classes
(see [16])

10 Importing Domain Ontologies into a User’s PIMO

Once modeled, the new domain ontology such as the teaching ontology in
the previous examples can be made available publicly for others, for example
by publishing it on the Web. A good reference for doing this is Best Practice
Recipes for Publishing RDF Vocabularies [12].
Semantically, an imported ontology is captured using a nrl:imports statement.
When a user imports a domain ontology, this statement should be added.

claudia:Pimo nrl:imports teaching:TeachingOntology.

Once the user of a Semantic Desktop system imports an external PIMO into
their own desktop, all new classes (which are sub-classes of pimo:Thing)
should become available to them as if they had created those classes them-
selves. Instances, on the other hand, are not automatically available. As said
in the introduction, the scope of a PIMO for an individual user is to model data
that is within their own attention and needed for knowledge work or private
use. However, when importing external ontologies or knowledge bases, not
all instances may be of interest to the user. As with imported information
elements, a separate Thing is created to represent the imported resource
within the PIMO of the user and connected to the imported instance using
pimo:hasOtherRepresentation27. Before creating a new Thing for an im-
ported instance, the PIMO of the user has to be checked if the entity is already
represented as a Thing, as indicated above in Section 11.1. Once represented
as a Thing in the user’s PIMO, it is possible to assign a personal identifier to it,
annotate it, and use it.
Implementations must automate the importing process. The user should be
able to interact with imported Things as if they were created by themselves.

11 Practical Directions on Using PIMO

In this section, a few issues that will arise in actual PIMO usage are discussed.
For each of these issues, we will suggest a recommended way of handling them.
Even though those things are not strictly speaking part of the ontology, they
are part of the standard defining how to use the PIMO ontology in applications.
Implementers should conform to these directions.

11.1 Creating Things

New PIMO Things can be created freely, but usually the creation of a Thing is
rooted in the existence of an information element. An algorithm to create new
Things based on information elements should follow these steps:

27An alternative would be to treat all Things present in the RDF data available of the user as if
they were created by the user, imported or not. This has the drawback that it allows to represent
the same real-world entity twice, first in the imported domain ontology and second in the user’s
own PIMO.

Task Force Ontologies Version 1.0 27

NEPOMUK 02.09.2008

Start The software agent encounters a resource with URI X and wants to
verify if the user already has knowledge about X.

Check GroundingOccurrence Query the user-PIMO for:

SELECT ?thing WHERE {?thing pimo:groundingOccurrence ?X.}

When a Thing is found, finished.

Check occurrences Repeat the last step to search if X is an occurrence of
a Thing.

Check identifiers Validate if the InformationElement has an identifier or a
referencing occurrence that is also used on an existing Thing. The information
element is called an occurrence of a Thing when it shares the same identifiers.
The correct query is:

SELECT ?thing

WHERE {

?thing ?p ?o.

?X ?p ?o.

?p rdfs:subPropertyOf nao:identifier.

} UNION {

?thing ?p ?o.

?X ?p ?o.

?p rdfs:subPropertyOf pimo:referencingOccurrence.

}

When a Thing is found, finished.

Create a new Thing When the last step did not return an existing Thing,
this can be an indicator that element X is new to the user and should be
modeled with a new Thing. Mint a new URI and add the identity values from
the InformationElement.
In the following SPARQL query example, we assume that Claudia’s System
has just encountered a new calendar event X and represents it using the new
minted URI claudia : Event42.

CONSTRUCT {

<claudia:Event42> rdf:type pimo:Thing.

<claudia:Event42> ?i ?io.

<claudia:Event42> nao:prefLabel ?title.

<claudia:Event42> rdf:type ?type.

<claudia:Event42> rdf:type ?pimotype.

<claudia:Event42> pimo:groundingOccurrence ?X.

<claudia:Event42> nao:created ``2007-06-30T18:11:00Z''.

<claudia:Event42> pimo:isDefinedBy claudia:PIMO.

} WHERE {

OPTIONAL (?X ?i ?io. ?i rdfs:subPropertyOf nao:identifier.).

OPTIONAL (?X nie:title ?title).

OPTIONAL (?X rdf:type ?type).

OPTIONAL (?X rdf:type ?type. ?pimotype rdfs:subClassOf ?type.

?pimotype rdfs:subClassOf pimo:Thing).

}

The different parts of this query are:

• all identifiers are copied (?i, ?io)

• the title is copied for readability and to use it for tagging (?title)

Task Force Ontologies Version 1.0 28

NEPOMUK 02.09.2008

• the original type(s) are copied (?type)

• find possible PIMO:Thing classes that can be used for this type (?pimo-
type)

• the groundingOccurrence relation is added

• the created timestamp is set to the current date

• the isDefinedBy relation is set

Finding a suitable class to represent the resource in the PIMO depends on a
mapping of information element classes to PIMO classes and can be realized
in different ways, see Section 6.11.

11.2 Changing the Type of a Thing

Changing the type of an instance can lead to invalid statements in the knowl-
edge base. E.g., this can happen when the instance in question is involved in
statements using a property with a specific domain and range, and the new
type is not compatible to those. As this would render the model invalid, this
situation must be avoided in applications interacting with PIMO data. A user
interface should remind the user of possible problems and should suggest
solutions.
A different approach is ontology-by-examples where the main principles is that
“the user is always right” and domain/range values are not explicitly set but
implied by previous usage. User interfaces may support this behavior by setting
the domain and range to pimo:Thing and suggest properties suitable for class
by analysing previous usage of the property.

11.3 Deleting a Thing

We can say that, in RDF, instances do not exist independently, but only as part of
statements. Thus, “deleting an instance” really means deleting all statements
in which this instance is involved (as subject or object). If the instance
has a grounding occurrence relation, a new pimo:groundingForDeletedThing

relation should be created to record the deletion. Data integration algorithms
analysing resource to automatically create Things can then avoid re-creating
the already deleted Thing.

11.4 Deleting User-generated Classes and Properties

Deleting a user-generated class is allowed but requires that instances are
re-typed to the direct super-class of the deleted class. Also the domains and
ranges of all properties defined with the class as domain or range need to be
changed to the direct superclass. These changes are necessary to prevent the
model from becoming invalid. Classes defined in the pimo language cannot be
deleted, only classes defined by the user can be deleted.
The direct super-class S of the class C is defined as the class where no other
class T exists where C has superclass T and T has superclass S. If there are
multiple S, all of them should be used as replacement when deleting a class.
If user-generated properties are deleted, this requires all statements in which
those properties are involved to be deleted as well, in order to prevent the
model to become invalid. Alternatively, all occurrences of the property could be
replaced by its super-property.

Task Force Ontologies Version 1.0 29

NEPOMUK 02.09.2008

11.5 Merging Duplicates

Duplicates are two Things that represent the same real-world entity within
a user’s PIMO. As we apply the unique name assumption (two Things with
different names are different), duplicates should be found and corrected. When
duplicates are found, both (the “duplicate” and the “original”) can be merged into
one single instance. In this process, RDF statements involving the duplicate are
changed so that they now refer to the original. In a local setup with one desktop
and all data stored in a single database, this process is without information loss
and causes no side-effects. As Semantic Web applications are in a distributed
scenario, deleting a duplicate resource can cause dangling links in related
databases and other side-effects.
For this, the pimo:hasDeprecatedRepresentation property should be used to
relate the original with the (now deleted) duplicate. Note that the range of this
property is not defined, as all data about the duplicate resource (including the
type) is deleted.
When merging two duplicate resource A and B into one resource C, a few
practical guidelines can reduce side-effects:

• The URI of C is either A or B, the older resource (as defined by nao:creationDate,
see Section 6.10) is to be preferred as it has a higher chance of being
used.

• The classes of C are the union of the classes of A and B.

• All statements about A and B are merged to C.

11.6 Unification of multiple Information Elements into one Thing

In comparison to merging duplicate Things, unification is the process when
multiple information elements representing the same real-world entity are
mapped to one pimo:Thing instance.
In PIMO, multiple information elements representing one real-world entity are
mapped to exactly one pimo:Thing instance using the pimo:groundingOccurrence

and pimo:occurrence relations. Algorithms or user interfaces implementing
unification must consider the identifying properties of a Thing (see Section 6.4)
when searching for possible Things to representing information elements.
Four default NRL Views and NRL ViewSpecifications are defined for different
levels of inference. Each creates a named graph that contains the instance
data and the inferred statements.

pimo:InferOccurrences a view that infers occurrences based on nie:identifiers

and pimo:referencingOccurrence annotations.

pimo:GroundingClosure a view that adds statements about the grounding
Occurrences and hasOtherRepresentation to a Thing.

pimo:OccurrenceClosure a view that adds statements about all occurrences
to a Thing.

pimo:FullPimoView a supergraph of all above.

By providing these graphs, we let the user and software agent decide if the full
closure is needed at all times. When no closure is needed, the plain NRL data
graphs can be used as-is. To answer complex queries like “Which e-mails were
sent to me by attendees of meetings that I have today”, the full closure is a
good choice.

Task Force Ontologies Version 1.0 30

NEPOMUK 02.09.2008

The ability to superimpose data using inference limits the data needed in a
PIMO to a necessary minimum: only the identification properties are manda-
tory, the occurrence and the hasOtherRepresentation properties superimpose
existing data.

claudia:DirkHagemann a pimo:Person;

pimo:occurrence <imap://claudia@example.com/INBOX/1#from>;

pimo:groundingOccurrence <file://home/claudia/dirk.vcf#dirk>.

Using the guiding example, an integrated view of Claudia on Paul is the follow-
ing, assuming full closure:

The canonical Dirk

claudia:DirkHagemann a pimo:Person;

the second type is also inferred

a nco:PersonContact;

pimo:isDefinedBy claudia:PIMO;

nao:prefLabel 'Dirk Hagemann';

nao:identifier "dirk@example.com";

pimo:occurrence <imap://claudia@example.com/INBOX/1#from>;

pimo:groundingOccurrence <file://home/claudia/dirk.vcf#dirk>;

pimo:referencingOccurrence <http://www.example.com/people/DirkHagemann>;

pimo:hasOtherRepresentation <http://id.example.com/person/1650>;

the inferred facts

nco:hasEmailAddress <mailto:dirk@example.com>;

nco:nameFamily "Hagemann";

nco:nameGiven "Dirk";

nco:photo <http://www.example.com/people/dirk/photo.jpg>.

E-mail, now pointing to the canonical Dirk

<imap://claudia@example.com/INBOX/1> a nmo:Mail;

nmo:from claudia:DirkHagemann.

11.7 Tagging and Annotating Files

Conceptually, once an Information Element (a file, an e-mail, a webpage, an
address book entry, etc.) is in the attention of the user and is read or annotated,
it is also a Thing in the mental model of the user. A core idea of the Semantic
Desktop is to use other Things as dimensions to annotate files and retrieve
them later, as described in [5].
Lets assume the file /home/claudia/doc/tripplan.pdf is to be tagged with
the tag “Belfast Meeting Package”.
A representation of the file is already extracted by the semantic desktop data
wrapper system (or any other content management system):

<file://home/claudia/doc/tripplan.pdf> a nie:TextDocument;

nie:language "en";

nie:title "Belfast Bus Timetable".

Additionally, the city of Belfast and the Belfast meeting package already exist
in the model, as well as a MeetingPackage class (which was either created by
Claudia, or came as part of a shared domain/group ontology):

claudia:BelfastMeetingPackage a claudia:MeetingPackage;

nao:personalIdentifier "Belfast Meeting Package";

pimo:isDefinedBy claudia:PIMO.

To add a simple tag, the file is now represented as a Thing (thingified) and the
tagging relation set.

Task Force Ontologies Version 1.0 31

NEPOMUK 02.09.2008

claudia:BelfastBusTimetable a pimo:Document;

nao:personalIdentifier "Belfast Bus Timetable";

pimo:isDefinedBy claudia:PIMO;

pimo:groundingOccurrence <file://home/claudia/doc/tripplan.pdf>;

nao:hasTag claudia:BelfastMeetingPackage.

The interested reader may now ask, “but why create a new Thing and not just
add the nao:hasTag relation directly to the file?” The reason to thingify the
file is twofold: first, it is possible to assign a new class to the file, for example
creating the class claudia:BusTimetable. Second, the same timetable may
be available in different data objects, if it is stored in an e-mail attachment, a
web resource, or a local file — it is always the same document. A tag added
to one occurrence of the file is also valid for other occurrences. Also refer to
Sections 7,9.3.
Given Claudia finds the same timetable on a website, the system can link the
two based on nie:identifiers (which should be globally unique identifiers for
information elements, independent of the data object they are stored in). This
example shows this case (with copied identifiers):

the file on the harddisk

<file://home/claudia/doc/tripplan.pdf> a nie:TextDocument;

nie:language "en";

nie:title "Belfast Bus Timetable";

this isbn is fictional

nie:identifier "ISBN:12123-123123".

<http://www.buseireann.ie/timetables/belfast.pdf>

a nie:TextDocument;

nie:title "Belfast Bus Timetable";

this isbn is fictional

nie:identifier "ISBN:12123-123123".

claudia:BelfastBusTimetable a pimo:Document;

pimo:isDefinedBy claudia:PIMO;

pimo:groundingOccurrence <file://home/claudia/doc/tripplan.pdf>;

pimo:occurrence <http://www.buseireann.ie/timetables/belfast.pdf>;

nie:identifier "ISBN:12123-123123";

nao:hasTag claudia:BelfastMeetingPackage.

The tag assigned to the bus time table is now valid, independent of the data
object.
Using the generic tag relation nao:hasTag is an easy-to-use entry point for
users that don’t need formal semantic relations.
Instead of using the nao:hasTag relation, one of the generic PIMO relations
(related, partOf, hasTopic) could be used, see Sect. 6.15 or properties
defined in domain ontologies.
Example: The Belfast Bus Timetable has the topic Belfast, which is not just a
Tag but says more about the relation between the timetable and the city. The
has Topic relation can be used for this:

claudia:BelfastBusTimetable a pimo:Document;

pimo:hasTopic claudia:Belfast.

Example: The relation between Claudia and the BelfastMeetingPackage can
be expressed using “has tag” but may also be represented with a relation saying
more about the semantics: Claudia is “attending this meeting”. Assuming that
the MeetingPackage is a sub-class of meeting, this could be expressed like:

claudia:BelfastMeetingPackage a meeting:MeetingPackage.

Task Force Ontologies Version 1.0 32

NEPOMUK 02.09.2008

instead of nao:hasTag, a semantic relation is used

claudia:Claudia pimo:attendee claudia:BelfastMeetingPackage.

11.8 Geo-locating Things

Things can be geo-located, meaning that their geographical location is set using
latitude, longitude and altitude information in the WGS84 geodetic reference
datum. In PIMO, the location is a separate entity of type Location, and other
items can then be geo-located there. The relation pimo:hasLocation is used
for this, pimo:isLocationOf is the inverse. There is an abstract marker class
for locatable Things: pimo:Locatable. Social events, organizations, persons,
and physical objects are locatable.
To add a location to a meeting, this data is added, for your reference the location
is also given:

claudia:InitialMeetinginBelfast a pimo:Meeting;

nao:prefLabel "Initial Meeting in Belfast";

pimo:hasLocation claudia:Belfast.

claudia:Belfast a pimo:City;

nao:prefLabel "Belfast";

geo:lat "54.5833333";

geo:long "-5.9333333".

Usually, locations should be reused to locate multiple Things, but new locations
can of course be generated anytime.
PIMO defines a number of general-purpose classes for countries, states, cities,
buildings, and rooms, which we consider independent of culture and domain.
Domain-specific ontologies can specify those classes further. In the rare case
when the type of location cannot be specified with any of the existing classes,
the superclass pimo:Location can be used. In some application scenarios
(such as geo-locating a large amount of photos or measurement values),
many locations would be needed. To simplify annotation and remove clutter,
specialized vocabularies may then be used, as for example done in the NEXIF
vocabulary for photos.

11.9 Defining what is in the PIMO and what is not: NRL Graphs and definedBy

The facts (i.e., the statements) used to describe Things should be kept in
named graphs according to the NRL standard. This allows to express metadata
about the facts, such as to which PIMO the Things belong (see Sect. 6.3) or
when individual triples were changed (see Sect. 6.10) and by whom. Another
important feature is to find which Things are in the user’s PIMO and which not.
In a shared environment, users may often import group-level ontologies that
contain Things modeled by others. Considering this, it is important to keep
up-to-date as to who said what, or, in other words, to detect if a Thing was
modeled by the user or not.
All data expressed about Things can be kept in NRL graphs. The minimal
metadata is:

• The type of the graph is nrl:KnowledgeBase, as it can contain both
instances and ontology constructs (see the NRL specification for more
details).

• The graph is imported into the user’s PIMO.

Task Force Ontologies Version 1.0 33

NEPOMUK 02.09.2008

Additional metadata such as nao:created can be added. These facts can be
expressed in a separate metadata graph. An example of how this looks like in
code using Trig Notation28:

The instance data

claudia:graph1 {

claudia:DirkHagemann a pimo:Person;

nao:prefLabel 'Dirk Hagemann'.

}

The metadata

claudia:graph1_metadata {

claudia:graph1 a nrl:KnowledgeBase;

claudia:PIMO nrl:imports claudia:graph1.

}

As not all implementers can or want to use NRL graphs to keep track
of the boundaries of a PIMO, pimo:isDefinedBy must be used to connect
classes, properties, and instances to the PIMO that defines them29.
To support both ways of detecting the boundaries of a user-PIMO, imple-
mentations may add the NRL metadata in addition to the pimo:isDefinedBy

statements to the generated data. Resulting in:

The instance data

claudia:graph1 {

claudia:DirkHagemann a pimo:Person;

pimo:isDefinedBy claudia:PIMO.

nao:prefLabel 'Dirk Hagemann'.

}

The metadata

claudia:graph1_metadata {

claudia:graph1 a nrl:KnowledgeBase;

claudia:PIMO nrl:imports claudia:graph1.

}

11.10 Using NAO and NIE Elements for Annotation

Throughout this document, we have shown several uses of NAO and NIE
elements that can be applied to pimo:Thing instances.
Semantically, we start from the assumption that a Thing modeled in PIMO is
describing a concept from the real world. On the other hand, the Thing itself
can be viewed as a set of statements or triples stored in a computer system.
Thus, Things are resources and can be annotated with NAO. Also, using PIMO
closure as described in Sect. 7.2, facts of NIE elements can be inferred as facts
of PIMO Things. Thus, Things can also have a NIE class as type.
In Table 1 we give an overview of how the semantics of the predicates may
alter when interpreted within the PIMO.
The text “no change” means that the interpretation is unchanged, “not inter-
preted” means you should avoid interpreting this property in PIMO. You may
notice that some properties are not interpreted because they have DataObjects
or Strings as range, where PIMO has properties modeling the same semantics
but using other pimo:Things as range, which is a more precise way of modeling
because of the UNA. “Required” means that this property is required for all
instances of pimo:Thing and this can be validated using the rules from Section

28http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
29Separation based on the namespace was considered by some to be enough, but is not (as

stores use fulltext comparison to handle namespaces, namespaces as such don’t exist in RDF but
only in XML).

Task Force Ontologies Version 1.0 34

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/

NEPOMUK 02.09.2008

12.2. “Recommended” means that you should use this property as if it is
required, but it cannot be validated in NRL as property restrictions are only
available in OWL.
The properties describing how information is stored (mime-type, bytesize,
characterset) are obsolete for Things, as they describe a serialization.

11.11 How to Infer Knowledge Using Rules?

The presented ontology may be used to express facts that can be used to
infer new knowledge. For example, the person Claudia may be working on the
project “CID”. Claudia is also employed by the company Example Inc. — this
may be used to infer that the company Example is involved in “CID” Such rules
are very useful to improve the results when querying, as they will provide more
answers.
In PIMO and NRL, it is not straightforward how to express these rules. Also,
as PIMO-upper is generic, any rules defined on this level may not apply in all
group-level ontologies.
We recommend to express such rules using a rule language (such as the ones
defined by the RIF working group of W3C30) or SPARQL-create statements.
These should be part of domain and group ontologies.

12 Rules Defined by PIMO

Some of the rules defined in PIMO cannot be expressed using ordinary NRL se-
mantics. These rules are written here using SPARQL construct queries and are
also part of the ontology, by virtue of nrl:RuleViewSpecification. The
rules help to infer additional statements or validate a model. All rules in this
section assume that at least the sub-class and sub-property relations
are inferred.

12.1 Construction Rules

The first set of rules define new information that is inferred from existing data.
They are used for integrating facts about Things by blending, see Sect. 7.2.
The rules are expressed based on the assumption that Tbox inferenced facts
are available in querying, whereas Abox inference may or may not. This means,
sub-class and sub-property relations are fully inferred, but the statements
implied by them may or may not31. For some of the rules, the semantics of
equality comparison is clearer under this assumption. For example, assume two
sub-properties of nao:identifier: book:number and person:number, both
with a range of integer and values starting with numbers from 0. Expressing a
rule as “two Things are equal when their nao:identifier is equal” could imply,
that a book is equal a person.
pimo:InferOccurrences Level: These are the rules to infer what resources
are occurrences of Things based on identifiers. You can use this approach
to integrate data from large stores. For example to see all appearances of
a document using the document’s NIE-identifier, this query searches for the
pimo:occurrence relations.

CONSTRUCT {

30http://www.w3.org/2005/rules/
31In instance bases, rules rdfs7 and rdfs9 make the majority of inferred statements and for

storage optimization http://www.w3.org/TR/rdf-mt/#RDFSRules

Task Force Ontologies Version 1.0 35

http://www.w3.org/2005/rules/
http://www.w3.org/TR/rdf-mt/#RDFSRules

NEPOMUK 02.09.2008

Term Semantics
nao:created Recommended When the RDF Resource representing

this Thing was first created in the user’s PIMO.
nao:identifier no change, used for identification and matching.
nao:lastModified Recommended When the Resource representing this

Thing was last changed in the user’s PIMO. Note that it
can be different from the nie:contentLastModified prop-
erty of a groundingOccurrence. When blending multiple
groundingOccurrences into a Thing, the latest content-
LastModified should be chosen.

nao:modified Recommended
nao:personalIdentifier Recommended
nao:prefLabel Recommended
nie:characterSet Not interpreted, obsolete in RDF
nie:comment no change
nie:contentCreated Not interpreted
nie:contentLastModified Not interpreted
nie:contentSize Not interpreted, obsolete in RDF
nie:copyright no change, can be set by the user when sharing Things

with others. See also nie:legal
nie:depends no change
nie:description no change
nie:disclaimer not interpreted
nie:generator no change, pimo:Things can be generated automati-

cally by software or manipulated by user interfaces
nie:generatorOption no change
nie:hasPart not interpreted, pimo:hasPart should be used
nie:identifier no change
nie:isStoredIn not interpreted, pimo:isDefinedBy covers the stor-

age.
nie:keyword not interpreted, should be modeled using hasTopic

and assigning the keyword as title of the topic.
nie:language no change
nie:legal no change, by default all legal properties scope all

the statements having the same subject as the legal
statement

nie:license no change
nie:licenseType no change
nie:links not interpreted, use pimo:related or pimo:hasTopic
nie:mimeType not interpreted, obsolete in RDF
nie:plainTextContent no change
nie:relatedTo not interpreted, use pimo:related
nie:subject not interpreted, use pimo:hasTopic
nie:title not interpreted
nie:version no change

Table 1: Semantics of NAO and NIE in PIMO

Task Force Ontologies Version 1.0 36

NEPOMUK 02.09.2008

?thing pimo:occurrence ?occurrence.

} WHERE {

?i rdfs:subPropertyOf nao:identifier.

?thing ?i ?value.

?occurrence ?i ?value.

}

pimo:GroundingClosure Level: This adds all facts from grounding occur-
rences and hasOtherRepresentation occurrences to Things.

CONSTRUCT {

?thing ?p ?o

} WHERE {

?thing pimo:groundingOccurrence ?x.

?x ?p ?o.

}

CONSTRUCT {

?s ?p ?thing

} WHERE {

?thing pimo:groundingOccurrence ?x.

?s ?p ?x.

}

CONSTRUCT {

?thing ?p ?o

} WHERE {

?thing pimo:hasOtherRepresentation ?x.

?x ?p ?o.

}

CONSTRUCT {

?s ?p ?thing

} WHERE {

?thing pimo:hasOtherRepresentation ?x.

?s ?p ?x.

}

pimo:OccurrenceClosure Level: This adds all facts of all occurrences to
Things.

CONSTRUCT {

?thing ?p ?o

} WHERE {

?thing pimo:occurrence ?x.

?x ?p ?o.

}

CONSTRUCT {

?s ?p ?thing

} WHERE {

?thing pimo:occurrence ?x.

?s ?p ?x.

}

A broader Topic is also the Topic of a Thing. If a Thing X has the topic A
and topic A has a broader topic B, then X has also the topic B. broader and
narrower are transitive.

CONSTRUCT {?x pimo:hasTopic ?B}

WHERE

{?x pimo:hasTopic ?A.

?A pimo:broader ?B.}

Note that this is not true for the hasPart relation.

Task Force Ontologies Version 1.0 37

NEPOMUK 02.09.2008

An alternative to the hasTopic rules would have been to represent topics as
RDFS classes (instead of having them as instance of type pimo:Topic) and
using rdfs:subClassOf relations instead of broader/narrower. But this has a
nasty side-effect that for a topic like “Web” having a sub-topic “Semantic Web”,
the user would suddenly be able to create instances of “Semantic Web”, this
would be confusing.

12.2 Validation Rules

These rules validate a model. Some assumptions stated in the text can be
validated using these rules. As a model for validation, we have chosen to pick
a similar approach as the Jena validation engine, namely creating errors. The
classes error:Error and error:Message were introduced for this purpose
and not defined any further, we assume Errors can have parameters that are
passed back as error:param1, error:param2, etc. The parameters can be
referenced in the error message for readability.

12.3 Rules Valid when Integrating with NIE

When using PIMO in coordination with NIE, certain properties from NIE can
be reused. The rules are often used to restrict properties defined in the NIE
ontology to be mandatory on pimo:Things, whereas they are optional when
used on nie:InformationElement. Such restrictions are possible in OWL but
not in NRL.
Every Thing must have a nao:prefLabel.

CONSTRUCT {

_:err a error:Error.

_:err error:Message ``Thing \%1 does not have a nao:prefLabel''.

_:err error:param1 ?x.

} WHERE {

?x rdf:type pimo:Thing.

OPTIONAL { ?x nao:prefLabel ?title } .

FILTER (!bound(?title))

}

Every Thing must have nao:created.

CONSTRUCT {

_:err a error:Error.

_:err error:Message ``Thing \%1 does not have a nao:created''.

_:err error:param1 ?x.

} WHERE {

?x rdf:type pimo:Thing.

OPTIONAL { ?x nao:created ?created } .

FILTER (!bound(?created))

}

13 Sources considered for designing PIMO

Several ontologies and scientific publications predate this specification. A
definition of the term PIMO was given in [17]: A PIMO is a Personal Information
Model of one person. It is a formal representation of parts of the users Mental
Model. Each concept in the Mental Model can be represented using a Thing

Task Force Ontologies Version 1.0 38

NEPOMUK 02.09.2008

or a sub-class of this class in RDF. Native Resources found in the Personal
Knowledge Workspace can be categorized, then they are occurrences of a
Thing.
A similar approach was used by Huiyong Xiao and Isabel F. Cruz in their paper
on “A Multi-Ontology Approach for Personal Information Management”, where
they differentiate between Application Layer, Domain Layer and Resource
Layer. Alexakos et al. described “A Multilayer Ontology Scheme for Integrated
Searching in Distributed Hypermedia” in [3]. There, the layers consist of
an upper search ontology layer, domain description ontologies layer, and a
semantic metadata layer.
PIMO is different from Topic Maps (TM) in that it is based on the logical and
semantic foundations of RDF and RDFS, whereas TM have no such foundation.
A major difference between TM and RDF is that Topic Maps Associations are
n-ary relations, whereas in RDF relations are always binary. In RDF, a similar
approach as to TM is the SKOS vocabulary [7]. It represents all Things using
the class Concept, this prohibits reusing inference and typed properties of
concepts (e.g., the “first name” property of a person cannot be modeled in
SKOS).
The idea of mapping SKOS, RDF, OWL and topic maps with upper ontologies
has come up repeatedly, but with varying outcome. We value these articles
as very important for our work, because of their excellent research and the
experience of the authors.

• Pepper and Schwab [14] try to map the identification approach of XML
Topic Maps to RDF, leaving a few issues open.

• Jack Park and Adam Cheyer mapped Topic Maps to Semantic Desktops
for Personal Information Management in [13].

• The Semex system provides ideas about reference reconciliation [6]

• Jerome Euzenat proposed a top-level ontology for PIM in light of FOAF32

Although this is a small, seemingly unimportant footnote, it shows how
often capable people tried to address this problem.

• User Profile Ontology version 1[8], mentioned in [4]33.

• Latif and Tjoa [11] map a user ontology against other top-level ontologies
such as SUMO and DOLCE and use the LATCH approach from Richard
Saul Wurman.

32http://www.w3.org/2001/sw/Europe/200210/calendar/SyncLink.html
33http://oceanis.mm.di.uoa.gr/pened/?category=publications

Task Force Ontologies Version 1.0 39

http://www.w3.org/2001/sw/Europe/200210/calendar/SyncLink.html
http://oceanis.mm.di.uoa.gr/pened/?category=publications

NEPOMUK 02.09.2008

References

[1] ISO/IEC 13250, Topic Maps, second edition. http://www.y12.doe.gov/
sgml/sc34/document/0322_files/iso13250-2nd-ed-v2.pdf, 19 May
2002.

[2] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation. http://www.w3.org/TR/rdf-schema/,
10 February 2004.

[3] K. Votis C. Alexakos, B. Vassiliadis and S. Likothanassis. A Multilayer
Ontology Scheme for Integrated Searching in Distributed Hypermedia,
volume Adaptive and Personalized Semantic Web of Studies in Computa-
tional Intelligence. Springer, 2006.

[4] T. Catarci, A. Dix, A. Katifori, G. Lepouras, and A. Poggi. Task-centered
information management. In C. Thanos and F. Borri, editors, DELOS
Conference 2007 on Working Notes, pages 253–263, Tirrenia, Pisa, 13-14
February 2007.

[5] Andreas R. Dengel. Six thousand words about multi-perspective personal
document management. In Proc. EDM IEEE Workshop. IEEE, Oct 2006.

[6] Xin Dong and Alon Y. Halevy. A platform for personal information manage-
ment and integration. In Proc. of the CIDR Conference, pages 119–130,
2005.

[7] Alistair Miles (edt). Simple knowledge organisation system (skos). http:
//www.w3.org/2004/02/skos/, Feb 2004.

[8] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, and C. Halatsis.
User profile ontology version 1. http://oceanis.mm.di.uoa.gr/pened/
?category=publications, 2006.

[9] Harald Holz, Heiko Maus, Ansgar Bernardi, and Oleg Rostanin. From
Lightweight, Proactive Information Delivery to Business Process-Oriented
Knowledge Management. volume 0, pages 101–127, 2005.

[10] William Jones and Jamie Teevan, editors. Personal Information Manage-
ment. University of Washington Press, October 2007.

[11] Khalid Latif and A Min Tjoa. Combining context ontology and landmarks for
personal information management. In Proceedings of International Con-
ference on Computing and Informatics (ICOCI), Kuala Lumpur, Malaysia,
June 2006.

[12] Alistair Miles, Thomas Baker, and Ralph Swick. Best practice recipes
for publishing RDF vocabularies. W3C working draft, W3C, Mar 2006.
http://www.w3.org/TR/swbp-vocab-pub/.

[13] Jack Park and Adam Cheyer. Just for me: Topic maps and ontologies.
In Lutz Maicher and Jack Park, editors, TMRA Charting the Topic Maps
Research and Applications Landscape, First International Workshop on
Topic Maps Research and Applications, volume 3873 of Lecture Notes in
Computer Science, pages 145–159. Springer, 2005.

[14] Steve Pepper and Sylvia Schwab. Curing the web’s identity crisis. subject
indicators for rdf. Technical report, Ontopia, 2003.

[15] Holger Rath. The topic maps handbook — detailed description of the
standard and practical guidelines for using it in knowledge management.
empolis white paper, empolis GmbH, 2003.

Task Force Ontologies Version 1.0 40

http://www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-2nd-ed-v2.pdf
http://www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-2nd-ed-v2.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/02/skos/
http://www.w3.org/2004/02/skos/
http://oceanis.mm.di.uoa.gr/pened/?category=publications
http://oceanis.mm.di.uoa.gr/pened/?category=publications
http://www.w3.org/TR/swbp-vocab-pub/

NEPOMUK 02.09.2008

[16] Jean Rohmer. Lessons for the future of semantic desktops learnt from 10
years of experience with the ideliance semantic networks manager. In Ste-
fan Decker, Jack Park, Dennis Quan, and Leo Sauermann, editors, Proc.
of Semantic Desktop Workshop at the ISWC, Galway, Ireland, November
6, volume 175, November 2005.

[17] Leo Sauermann, Ludger van Elst, and Andreas Dengel. Pimo - a frame-
work for representing personal information models. In Tassilo Pellegrini
and Sebastian Schaffert, editors, Proceedings of I-Semantics’ 07, pages
pp. 270–277. JUCS, 2007.

[18] Graham Moore (eds). Steve Pepper. XML Topic Maps (XTM) 1.0. Specifi-
cation, TopicMaps.Org, 2001.

Task Force Ontologies Version 1.0 41

NEPOMUK 02.09.2008

A PIMO Specification

A.1 Ontology Classes Description

A.1.1 Agent

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:Organization A.1.20 p. 49
pimo:Person A.1.22 p. 50
pimo:PersonGroup A.1.23 p. 50

In domain of: pimo:createdPimo A.2.9 p. 57
pimo:isOrganizationMemberOf A.2.28 p. 63

In range of: pimo:creator A.2.10 p. 57
pimo:hasOrganizationMember A.2.20 p. 60

Description An agent (eg. person, group, software or physical
artifact). The Agent class is the class of agents;
things that do stuff. A well known sub-class is Per-
son, representing people. Other kinds of agents
include Organization and Group. (inspired by
FOAF). Agent is not a subclass of NAO:Party.

A.1.2 Association

Superclasses pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource

Subclasses pimo:Attendee A.1.3 p. 42
pimo:OrganizationMember A.1.21 p. 50
pimo:PersonRole A.1.24 p. 51

In domain of: pimo:associationEffectual A.2.1 p. 55
pimo:associationMember A.2.2 p. 55

In range of: –
Description An association between two or more pimo-things.

This is used to model n-ary relations and meta-
data about relations. For example, the asociation
of a person being organizational member is only
effectual within a period of time (after the person
joined the organization and before the person left
the organization). There can be multiple periods
of time when associations are valid.

A.1.3 Attendee

Superclasses pimo:Association A.1.2 p. 42
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:PersonRole A.1.24 p. 51
rdfs:Resource

Task Force Ontologies Version 1.0 42

NEPOMUK 02.09.2008

Subclasses –
In domain of: pimo:attendingMeeting A.2.4 p. 56
In range of: –
Description The role of someone attending a social event.

A.1.4 BlogPost

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Document A.1.13 p. 47
pimo:LogicalMediaType A.1.17 p. 48
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description A blog note. You just want to write something

down right now and need a place to do that. Add
a blog-note! This is an example class for a docu-
ment type, there are more detailled ontologies to
model Blog-Posts (like SIOC).

A.1.5 Building

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Location A.1.16 p. 48
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description A structure that has a roof and walls and stands

more or less permanently in one place; "there
was a three-story building on the corner"; "it was
an imposing edifice". (Definition from SUMO).

A.1.6 City

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Location A.1.16 p. 48
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses –

Task Force Ontologies Version 1.0 43

NEPOMUK 02.09.2008

In domain of: –
In range of: –
Description A large and densely populated urban area; may

include several independent administrative dis-
tricts; "Ancient Troy was a great city". (Definition
from SUMO)

A.1.7 ClassOrThing

Superclasses pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource

Subclasses pimo:Agent A.1.1 p. 42
pimo:BlogPost A.1.4 p. 43
pimo:Building A.1.5 p. 43
pimo:City A.1.6 p. 43
pimo:Collection A.1.10 p. 45
pimo:Contract A.1.11 p. 46
pimo:Country A.1.12 p. 46
pimo:Document A.1.13 p. 47
pimo:Event A.1.14 p. 47
pimo:Locatable A.1.15 p. 47
pimo:Location A.1.16 p. 48
pimo:LogicalMediaType A.1.17 p. 48
pimo:Meeting A.1.18 p. 49
pimo:Note A.1.19 p. 49
pimo:Organization A.1.20 p. 49
pimo:Person A.1.22 p. 50
pimo:PersonGroup A.1.23 p. 50
pimo:ProcessConcept A.1.26 p. 52
pimo:Project A.1.27 p. 52
pimo:Room A.1.28 p. 52
pimo:SocialEvent A.1.29 p. 53
pimo:State A.1.30 p. 53
pimo:Task A.1.31 p. 53
pimo:Thing A.1.32 p. 54
pimo:Topic A.1.33 p. 55

In domain of: pimo:hasFolder A.2.18 p. 60
pimo:wikiText A.2.45 p. 67

In range of: –
Description Superclass of class and thing. To add properties

to both class and thing.

A.1.8 ClassOrThingOrPropertyOrAssociation

Superclasses rdfs:Resource

Task Force Ontologies Version 1.0 44

NEPOMUK 02.09.2008

Subclasses pimo:Agent A.1.1 p. 42
pimo:Association A.1.2 p. 42
pimo:Attendee A.1.3 p. 42
pimo:BlogPost A.1.4 p. 43
pimo:Building A.1.5 p. 43
pimo:City A.1.6 p. 43
pimo:ClassOrThing A.1.7 p. 44
pimo:Collection A.1.10 p. 45
pimo:Contract A.1.11 p. 46
pimo:Country A.1.12 p. 46
pimo:Document A.1.13 p. 47
pimo:Event A.1.14 p. 47
pimo:Locatable A.1.15 p. 47
pimo:Location A.1.16 p. 48
pimo:LogicalMediaType A.1.17 p. 48
pimo:Meeting A.1.18 p. 49
pimo:Note A.1.19 p. 49
pimo:Organization A.1.20 p. 49
pimo:OrganizationMember A.1.21 p. 50
pimo:Person A.1.22 p. 50
pimo:PersonGroup A.1.23 p. 50
pimo:PersonRole A.1.24 p. 51
pimo:ProcessConcept A.1.26 p. 52
pimo:Project A.1.27 p. 52
pimo:Room A.1.28 p. 52
pimo:SocialEvent A.1.29 p. 53
pimo:State A.1.30 p. 53
pimo:Task A.1.31 p. 53
pimo:Thing A.1.32 p. 54
pimo:Topic A.1.33 p. 55

In domain of: pimo:isDefinedBy A.2.26 p. 62
In range of: –
Description Superclass of resources that can be generated

by the user.

A.1.9 ClassRole

Superclasses rdfs:Resource
Subclasses –
In domain of: –
In range of: pimo:classRole A.2.7 p. 57
Description Roles of classes in PIMO: concrete instances are

Abstract and Concrete.
Instances pimo:AbstractClass

pimo:ConcreteClass

A.1.10 Collection

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Task Force Ontologies Version 1.0 45

NEPOMUK 02.09.2008

Subclasses pimo:PersonGroup A.1.23 p. 50
In domain of: –
In range of: –
Description A collection of Things, independent of their class.

The items in the collection share a common prop-
erty. Which property may be modelled explicitly
or mentioned in the description of the Collection.
The requirement of explicit modelling the seman-
tic meaning of the collection is not mandatory,
as collections can be created ad-hoc. Implizit
modelling can be applied by the system by learn-
ing the properties. For example, a Collection
of "Coworkers" could be defined as that all ele-
ments must be of class "Person" and have an
attribute "work for the same Organization as the
user". Further standards can be used to model
these attributes.

A.1.11 Contract

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Document A.1.13 p. 47
pimo:LogicalMediaType A.1.17 p. 48
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description A binding agreement between two or more per-

sons that is enforceable by law. (Definition from
SUMO). This is an example class for a document
type, there are more detailled ontologies to model
Contracts.

A.1.12 Country

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Location A.1.16 p. 48
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description The territory occupied by a nation; "he returned to

the land of his birth"; "he visited several European
countries". (Definition from SUMO)

Task Force Ontologies Version 1.0 46

NEPOMUK 02.09.2008

A.1.13 Document

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:LogicalMediaType A.1.17 p. 48
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:BlogPost A.1.4 p. 43
pimo:Contract A.1.11 p. 46
pimo:Note A.1.19 p. 49

In domain of: –
In range of: –
Description A generic document. This is a placeholder class

for document-management domain ontologies to
subclass. Create more and specified subclasses
of pimo:Document for the document types in your
domain. Documents are typically instances of
both NFO:Document (modeling the information
element used to store the document) and a Logi-
calMediaType subclass. Two examples are given
for what to model here: a contract for a business
domain, a BlogPost for an informal domain.

A.1.14 Event

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:ProcessConcept A.1.26 p. 52
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:Meeting A.1.18 p. 49
pimo:SocialEvent A.1.29 p. 53

In domain of: –
In range of: –
Description Something that happens An Event is conceived

as compact in time. (Definition from Merriam-
Webster)

A.1.15 Locatable

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:Meeting A.1.18 p. 49
pimo:Organization A.1.20 p. 49
pimo:Person A.1.22 p. 50
pimo:SocialEvent A.1.29 p. 53

In domain of: pimo:hasLocation A.2.19 p. 60

Task Force Ontologies Version 1.0 47

NEPOMUK 02.09.2008

In range of: –
Description Things that can be at a location. Abstract class,

use it as a superclass of things that can be placed
in physical space.

A.1.16 Location

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses pimo:Building A.1.5 p. 43
pimo:City A.1.6 p. 43
pimo:Country A.1.12 p. 46
pimo:Room A.1.28 p. 52
pimo:State A.1.30 p. 53

In domain of: pimo:containsLocation A.2.8 p. 57
pimo:isLocationOf A.2.27 p. 62
pimo:locatedWithin A.2.33 p. 64

In range of: pimo:containsLocation A.2.8 p. 57
pimo:hasLocation A.2.19 p. 60
pimo:locatedWithin A.2.33 p. 64

Description A physical location. Subclasses are modeled
for the most common locations humans work in:
Building, City, Country, Room, State. This selec-
tion is intended to be applicable cross-cultural
and cross-domain. City is a prototype that can
be further refined for villages, etc. Subclass of a
WGS84:SpatialThing, can have geo-coordinates.

A.1.17 LogicalMediaType

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:BlogPost A.1.4 p. 43
pimo:Contract A.1.11 p. 46
pimo:Document A.1.13 p. 47
pimo:Note A.1.19 p. 49

In domain of: –
In range of: –

Task Force Ontologies Version 1.0 48

NEPOMUK 02.09.2008

Description Logical media types represent the content aspect
of information elements e.g. a flyer, a contract, a
promotional video, a todo list. The user can cre-
ate new logical media types dependend on their
domain: a salesman will need MarketingFlyer,
Offer, Invoice while a student might create Re-
port, Thesis and Homework. This is independent
from the information element and data object
(NIE/NFO) in which the media type will be stored.
The same contract can be stored in a PDF file, a
text file, or an HTML website. The groundingOc-
currence of a LogicalMediaType is the Document
that stores the content.

A.1.18 Meeting

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Event A.1.14 p. 47
pimo:Locatable A.1.15 p. 47
pimo:ProcessConcept A.1.26 p. 52
rdfs:Resource
pimo:SocialEvent A.1.29 p. 53
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description The social act of assembling for some common

purpose; "his meeting with the salesman was the
high point of his day". (Definition from SUMO)

A.1.19 Note

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Document A.1.13 p. 47
pimo:LogicalMediaType A.1.17 p. 48
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description A note. The textual contents of the note should

be expressed in the nao:description value of the
note.

A.1.20 Organization

Task Force Ontologies Version 1.0 49

NEPOMUK 02.09.2008

Superclasses pimo:Agent A.1.1 p. 42
pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Locatable A.1.15 p. 47
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: pimo:hasOrganizationMember A.2.20 p. 60
In range of: pimo:isOrganizationMemberOf A.2.28 p. 63

pimo:organization A.2.37 p. 65
Description An administrative and functional structure (as a

business or a political party). (Definition from
Merriam-Webster)

A.1.21 OrganizationMember

Superclasses pimo:Association A.1.2 p. 42
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:PersonRole A.1.24 p. 51
rdfs:Resource

Subclasses –
In domain of: pimo:organization A.2.37 p. 65
In range of: –
Description The role of one or multiple persons being a

member in one or multiple organizations. Use
pimo:organization and pimo:roleHolder to link to
the organizations and persons.

A.1.22 Person

Superclasses pimo:Agent A.1.1 p. 42
pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Locatable A.1.15 p. 47
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: pimo:attends A.2.5 p. 56

pimo:jabberId A.2.32 p. 64
In range of: pimo:attendee A.2.3 p. 56

pimo:roleHolder A.2.41 p. 66
Description Represents a person. Either living, dead, real or

imaginary. (Definition from foaf:Person)

A.1.23 PersonGroup

Task Force Ontologies Version 1.0 50

NEPOMUK 02.09.2008

Superclasses pimo:Agent A.1.1 p. 42
pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Collection A.1.10 p. 45
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description A group of Persons. They are connected to each

other by sharing a common attribute, for example
they all belong to the same organization or have
a common interest. Refer to pimo:Collection for
more information about defining collections.

A.1.24 PersonRole

Superclasses pimo:Association A.1.2 p. 42
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource

Subclasses pimo:Attendee A.1.3 p. 42
pimo:OrganizationMember A.1.21 p. 50

In domain of: pimo:roleContext A.2.40 p. 66
pimo:roleHolder A.2.41 p. 66

In range of: –
Description A person takes a certain role in a given context.

The role can be that of "a mentor or another
person" or "giving a talk at a meeting", etc.

A.1.25 PersonalInformationModel

Superclasses nrl:Data
nrl:Graph
nrl:InstanceBase
nrl:KnowledgeBase
nrl:Ontology
rdfs:Resource
nrl:Schema

Subclasses –
In domain of: pimo:creator A.2.10 p. 57
In range of: pimo:createdPimo A.2.9 p. 57

pimo:isDefinedBy A.2.26 p. 62
Description A Personal Information Model (PIMO) of a user.

Represents the sum of all information from the
personal knowledge workspace (in literature also
referred to as Personal Space of Information
(PSI)) which a user needs for Personal Informa-
tion Management (PIM).

Task Force Ontologies Version 1.0 51

NEPOMUK 02.09.2008

A.1.26 ProcessConcept

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:Event A.1.14 p. 47
pimo:Meeting A.1.18 p. 49
pimo:Project A.1.27 p. 52
pimo:SocialEvent A.1.29 p. 53
pimo:Task A.1.31 p. 53

In domain of: pimo:dtend A.2.12 p. 58
pimo:dtstart A.2.13 p. 58

In range of: –
Description Concepts that relate to a series of actions or

operations conducing to an end. Abstract class.
Defines optional start and endtime properties,
names taken from NCAL.

A.1.27 Project

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:ProcessConcept A.1.26 p. 52
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description Any piece of work that is undertaken or attempted

(Wordnet). An enterprise carefully planned to
achieve a particular aim (Oxford Dictionary).

A.1.28 Room

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Location A.1.16 p. 48
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –

Task Force Ontologies Version 1.0 52

NEPOMUK 02.09.2008

Description A properPart of a Building which is separated
from the exterior of the Building and/or other
Rooms of the Building by walls. Some Rooms
may have a specific purpose, e.g. sleeping,
bathing, cooking, entertainment, etc. (Definition
from SUMO).

A.1.29 SocialEvent

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Event A.1.14 p. 47
pimo:Locatable A.1.15 p. 47
pimo:ProcessConcept A.1.26 p. 52
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses pimo:Meeting A.1.18 p. 49
In domain of: pimo:attendee A.2.3 p. 56

pimo:duration A.2.14 p. 58
In range of: pimo:attendingMeeting A.2.4 p. 56

pimo:attends A.2.5 p. 56
Description A social occasion or activity. (Definition from

Merriam-Webster)

A.1.30 State

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:Location A.1.16 p. 48
rdfs:Resource
geo:SpatialThing
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: –
In range of: –
Description Administrative subdivisions of a Nation that are

broader than any other political subdivisions that
may exist. This Class includes the states of
the United States, as well as the provinces of
Canada and European countries. (Definition from
SUMO).

A.1.31 Task

Task Force Ontologies Version 1.0 53

NEPOMUK 02.09.2008

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
pimo:ProcessConcept A.1.26 p. 52
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: pimo:taskDueTime A.2.44 p. 67
In range of: –
Description A (usually assigned) piece of work (often to be

finished within a certain time). (Definition from
Merriam-Webster)

A.1.32 Thing

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource

Subclasses pimo:Agent A.1.1 p. 42
pimo:BlogPost A.1.4 p. 43
pimo:Building A.1.5 p. 43
pimo:City A.1.6 p. 43
pimo:Collection A.1.10 p. 45
pimo:Contract A.1.11 p. 46
pimo:Country A.1.12 p. 46
pimo:Document A.1.13 p. 47
pimo:Event A.1.14 p. 47
pimo:Locatable A.1.15 p. 47
pimo:Location A.1.16 p. 48
pimo:LogicalMediaType A.1.17 p. 48
pimo:Meeting A.1.18 p. 49
pimo:Note A.1.19 p. 49
pimo:Organization A.1.20 p. 49
pimo:Person A.1.22 p. 50
pimo:PersonGroup A.1.23 p. 50
pimo:ProcessConcept A.1.26 p. 52
pimo:Project A.1.27 p. 52
pimo:Room A.1.28 p. 52
pimo:SocialEvent A.1.29 p. 53
pimo:State A.1.30 p. 53
pimo:Task A.1.31 p. 53
pimo:Topic A.1.33 p. 55

In domain of: pimo:datatypeProperty A.2.11 p. 58
pimo:groundingOccurrence A.2.16 p. 59
pimo:hasDeprecatedRepresentation A.2.17 p. 59
pimo:hasOtherRepresentation A.2.22 p. 61
pimo:hasPart A.2.24 p. 61
pimo:hasTopic A.2.25 p. 62
pimo:isRelated A.2.29 p. 63
pimo:isTopicOf A.2.30 p. 63
pimo:objectProperty A.2.35 p. 64
pimo:occurrence A.2.36 p. 65
pimo:partOf A.2.38 p. 65
pimo:referencingOccurrence A.2.39 p. 66

Task Force Ontologies Version 1.0 54

NEPOMUK 02.09.2008

In range of: pimo:associationMember A.2.2 p. 55
pimo:hasPart A.2.24 p. 61
pimo:hasTopic A.2.25 p. 62
pimo:isLocationOf A.2.27 p. 62
pimo:isRelated A.2.29 p. 63
pimo:isTopicOf A.2.30 p. 63
pimo:objectProperty A.2.35 p. 64
pimo:partOf A.2.38 p. 65
pimo:roleContext A.2.40 p. 66

Description Entities that are in the direct attention of the user
when doing knowledge work.

A.1.33 Topic

Superclasses pimo:ClassOrThing A.1.7 p. 44
pimo:ClassOrThingOrPropertyOrAssociation
A.1.8 p. 44
rdfs:Resource
pimo:Thing A.1.32 p. 54

Subclasses –
In domain of: pimo:subTopic A.2.42 p. 66

pimo:superTopic A.2.43 p. 67
In range of: pimo:subTopic A.2.42 p. 66

pimo:superTopic A.2.43 p. 67
Description A topic is the subject of a discussion or docu-

ment. Topics are distinguished from Things in
their taxonomic nature, examples are scientific
areas such as "Information Science", "Biology",
or categories used in content syndication such
as "Sports", "Politics". They are specific to the
user’s domain.

A.2 Ontology Properties Description

A.2.1 associationEffectual

Domain pimoAssociation A.1.2 p. 42
Range rdfsResource
Superproperties –
Subproperties –
Description During which time is this association effective? If

omitted, the association is always effective. Start
time and end-time may be left open, an open
start time indicates that the fact is unknown, an
open end-time indicates that the end-date is ei-
ther unknown or the association has not ended.
There can be multiple effectual periods.

A.2.2 associationMember

Domain pimoAssociation A.1.2 p. 42

Task Force Ontologies Version 1.0 55

NEPOMUK 02.09.2008

Range pimoThing A.1.32 p. 54
Superproperties –
Subproperties pimo:attendingMeeting A.2.4 p. 56

pimo:organization A.2.37 p. 65
pimo:roleContext A.2.40 p. 66
pimo:roleHolder A.2.41 p. 66

Description An super-property of all roles that an entity can
have in an association. Member is the generic
role of a thing in an association. Association
subclasses should define sub-properties of this
property. Associations can have Things as

A.2.3 attendee

Domain pimoSocialEvent A.1.29 p. 53
Range pimoPerson A.1.22 p. 50
Superproperties nao:annotation

nao:isRelated
pimo:isRelated A.2.29 p. 63
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description A social event is attended by a person.

A.2.4 attendingMeeting

Domain pimoAttendee A.1.3 p. 42
Range pimoSocialEvent A.1.29 p. 53
Superproperties pimo:associationMember A.2.2 p. 55

pimo:roleContext A.2.40 p. 66
Subproperties –
Description the attended meeting

A.2.5 attends

Domain pimoPerson A.1.22 p. 50
Range pimoSocialEvent A.1.29 p. 53
Superproperties nao:annotation

nao:isRelated
pimo:isRelated A.2.29 p. 63
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description A person attends a social event.

A.2.6 broader

Domain
Range
Superproperties –

Task Force Ontologies Version 1.0 56

NEPOMUK 02.09.2008

Subproperties –
Description

A.2.7 classRole

Domain
Range pimoClassRole A.1.9 p. 45
Superproperties –
Subproperties –
Description Annotating abstract and concrete classes. Im-

plementations may offer the feature to hide ab-
stract classes. By default, classes are concrete.
Classes can be declared abstract by setting their
classRole to abstract. Instances should not have
an abstract class as type (if not inferred).

A.2.8 containsLocation

Domain pimoLocation A.1.16 p. 48
Range pimoLocation A.1.16 p. 48
Superproperties pimo:hasPart A.2.24 p. 61

pimo:objectProperty A.2.35 p. 64
Subproperties –
Description The subject location contains the object location.

For example, a building contains a room or a
country contains a city.

A.2.9 createdPimo

Domain pimoAgent A.1.1 p. 42
Range pimoPersonalInformationModel A.1.25 p. 51
Superproperties –
Subproperties –
Description The creator of the Personal Information Model.

The human being whose mental models are rep-
resented in the PIMO.

A.2.10 creator

Domain pimoPersonalInformationModel A.1.25 p. 51
Range pimoAgent A.1.1 p. 42
Superproperties nao:annotation

x:creator
nao:creator

Subproperties –

Task Force Ontologies Version 1.0 57

NEPOMUK 02.09.2008

Description The creator of the Personal Information Model.
A subproperty of NAO:creator. The human be-
ing whose mental models are represented in the
PIMO. Range is an Agent.

A.2.11 datatypeProperty

Domain pimoThing A.1.32 p. 54
Range
Superproperties –
Subproperties geo:alt

pimo:dtend A.2.12 p. 58
pimo:dtstart A.2.13 p. 58
pimo:duration A.2.14 p. 58
geo:lat
geo:long
pimo:taskDueTime A.2.44 p. 67

Description The object of statements is a literal, resource,
or datatype value describing the subject thing.
Users should be able to edit statements defined
with this property. Abstract super-property.

A.2.12 dtend

Domain pimoProcessConcept A.1.26 p. 52
Range xsddateTime
Superproperties pimo:datatypeProperty A.2.11 p. 58
Subproperties –
Description This property specifies the date and time when a

process ends. Inspired by NCAL:dtend.

A.2.13 dtstart

Domain pimoProcessConcept A.1.26 p. 52
Range xsddateTime
Superproperties pimo:datatypeProperty A.2.11 p. 58
Subproperties –
Description This property specifies when the process begins.

Inspired by NCAL:dtstart.

A.2.14 duration

Domain pimoSocialEvent A.1.29 p. 53
Range rdfsResource
Superproperties pimo:datatypeProperty A.2.11 p. 58
Subproperties –
Description The duration of the meeting. Begin and end time.

Task Force Ontologies Version 1.0 58

NEPOMUK 02.09.2008

A.2.15 groundingForDeletedThing

Domain
Range rdfsResource
Superproperties –
Subproperties –
Description This NIE Information Element was used as a

grounding occurrence for the object Thing. The
Thing was then deleted by the user manually, in-
dicating that this Information Element should not
cause an automatic creation of another Thing in
the future. The object resource has no range
to indicate that it was completely removed from
the user’s PIMO, including the rdf:type statement.
Relevant for data alignment and enrichment algo-
rithms.

A.2.16 groundingOccurrence

Domain pimoThing A.1.32 p. 54
Range nie InformationElement ?? p. ??
Superproperties pimo:occurrence A.2.36 p. 65
Subproperties –
Description The subject Thing represents the entity that is

described in the object InformationElement. The
subject Thing is the canonical, unique represen-
tation in the personal information model for the
entity described in the object. Multiple Informa-
tionElements can be the grounding occurrence
of the same Thing, one InformationElement can
be the groundingOccurrence of only one Thing.

A.2.17 hasDeprecatedRepresentation

Domain pimoThing A.1.32 p. 54
Range rdfsResource
Superproperties –
Subproperties –
Description The subject Thing was represented previously

using the object resource. This indicates that the
object resource was a duplicate representation
of the subject and merged with the subject. Im-
plementations can use this property to resolve
dangling links in distributed system. When en-
countering resources that are deprecated repre-
sentations of a Thing, they should be replaced
with the Thing. The range is not declared as we
assume all knowledge about the object is gone,
including its rdf:type.

Task Force Ontologies Version 1.0 59

NEPOMUK 02.09.2008

A.2.18 hasFolder

Domain pimoClassOrThing A.1.7 p. 44
Range nfoFolder ?? p. ??
Superproperties –
Subproperties –
Description Folders can be used to store information ele-

ments related to a Thing or Class. This prop-
erty can be used to connect a Class or Thing to
existing Folders. Implementations can suggest
annotations for documents stored inside these
folders or suggest the folder for new documents
related to the Thing or Class.

A.2.19 hasLocation

Domain pimoLocatable A.1.15 p. 47
Range pimoLocation A.1.16 p. 48
Superproperties nao:annotation

nao:isRelated
pimo:isRelated A.2.29 p. 63
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description The subject thing is currently located at the object

location.

A.2.20 hasOrganizationMember

Domain pimoOrganization A.1.20 p. 49
Range pimoAgent A.1.1 p. 42
Superproperties pimo:hasPart A.2.24 p. 61

pimo:objectProperty A.2.35 p. 64
Subproperties –
Description The subject organization has the object person

or organization (Agent) as a member.

A.2.21 hasOtherConceptualization

Domain rdfsClass
Range rdfsClass
Superproperties pimo:occurrence A.2.36 p. 65

rdfs:subClassOf
Subproperties –

Task Force Ontologies Version 1.0 60

NEPOMUK 02.09.2008

Description Short: hasOtherRepresentation points from a
Class in your PIMO to a class in a domain on-
tology that represents the same class. Longer:
hasOtherConceptualization means that a class of
real world objects O represented by a concept C1
in the ontology has additional conceptualizations
(as classes C2-Cn in different domain ontologies).
This means: IF (O_i is conceptialized by C_j in
Ontology_k) AND (O_l is conceptialized by C_m
in Ontology_n) THEN (O_i and O_l is the same
set of objects). hasOtherConceptualization is an
transitive relation, but not equivalent (not sym-
metric nor reflexive).

A.2.22 hasOtherRepresentation

Domain pimoThing A.1.32 p. 54
Range rdfsResource
Superproperties pimo:occurrence A.2.36 p. 65
Subproperties –
Description hasOtherRepresentation points from a Thing in

your PIMO to a thing in an ontology that repre-
sents the same real world thing. This means
that the real world object O represented by an
instance I1 has additional representations (as
instances I2-In of different conceptualizations).
This means: IF (I_i represents O_j in Ontology_k)
AND (I_m represents O_n in Ontology_o) THEN
(O_n and O_j are the same object). hasOther-
Representation is a transitive relation, but not
equivalent (not symmetric nor reflexive).
For example, the URI of a foaf:Person represen-
tation published on the web is a hasOtherRepre-
sentation for the person. This property is inverse
functional, two Things from two information mod-
els having the same hasOtherRepresentation are
considered to be representations of the same en-
tity from the real world.
TODO: rename this to subjectIndicatorRef to re-
semble topic maps ideas?

A.2.23 hasOtherSlot

Domain rdfProperty
Range rdfProperty
Superproperties rdfs:subPropertyOf
Subproperties –
Description hasOtherSlot points from a clot in your PIMO to

a slot in a domain ontology that represents the
same connection idea.

A.2.24 hasPart

Task Force Ontologies Version 1.0 61

NEPOMUK 02.09.2008

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54
Superproperties pimo:objectProperty A.2.35 p. 64
Subproperties pimo:containsLocation A.2.8 p. 57

pimo:hasOrganizationMember A.2.20 p. 60
pimo:subTopic A.2.42 p. 66

Description The object is part of the subject. Like a page is
part of a book or an engine is part of a car. You
can make sub-properties of this to reflect more
detailed relations.

A.2.25 hasTopic

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54
Superproperties nao:annotation

nao:hasTopic
nao:isRelated
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description The subject’s contents describes the object. Or

the subject can be seen as belonging to the topic
described by the object. Similar semantics as
skos:subject.

A.2.26 isDefinedBy

Domain pimoClassOrThingOrPropertyOrAssociation
A.1.8 p. 44

Range pimoPersonalInformationModel A.1.25 p. 51
Superproperties –
Subproperties –
Description Each element in a PIMO must be connected to

the PIMO, to be able to track multiple PIMOs in a
distributed scenario. Also, this is the way to find
the user that this Thing belongs to.

A.2.27 isLocationOf

Domain pimoLocation A.1.16 p. 48
Range pimoThing A.1.32 p. 54
Superproperties nao:annotation

nao:isRelated
pimo:isRelated A.2.29 p. 63
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description The subject location is the current location of the

object.

Task Force Ontologies Version 1.0 62

NEPOMUK 02.09.2008

A.2.28 isOrganizationMemberOf

Domain pimoAgent A.1.1 p. 42
Range pimoOrganization A.1.20 p. 49
Superproperties pimo:objectProperty A.2.35 p. 64

pimo:partOf A.2.38 p. 65
Subproperties –
Description The subject person or organozation (Agent) is

member of the object organization.

A.2.29 isRelated

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54
Superproperties nao:annotation

nao:isRelated
pimo:objectProperty A.2.35 p. 64

Subproperties pimo:attendee A.2.3 p. 56
pimo:attends A.2.5 p. 56
pimo:hasLocation A.2.19 p. 60
pimo:isLocationOf A.2.27 p. 62

Description The thing is related to the other thing. Similar
in meaning to skos:related. Symmetric but not
transitive.

A.2.30 isTopicOf

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54
Superproperties nao:annotation

nao:isRelated
nao:isTopicOf
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description This thing is described further in the object thing.

Similar semantics as skos:isSubjectOf.

A.2.31 isWriteable

Domain
Range rdfsLiteral
Superproperties –
Subproperties –
Description Defines if this information model can be modified

by the user of the system. This is usually false for
imported ontologies and true for the user’s own
PersonalInformationModel.

Task Force Ontologies Version 1.0 63

NEPOMUK 02.09.2008

A.2.32 jabberId

Domain pimoPerson A.1.22 p. 50
Range rdfsLiteral
Superproperties –
Subproperties –
Description Jabber-ID of the user. Used to communi-

cate amongst peers in the social scenario
of the semantic desktop. Use the xmpp
node identifier as specified by RFC3920, see
http://www.xmpp.org/specs/rfc3920.html#addressing-
node. The format is the same as e-mail
addresses: username@hostname.

A.2.33 locatedWithin

Domain pimoLocation A.1.16 p. 48
Range pimoLocation A.1.16 p. 48
Superproperties pimo:objectProperty A.2.35 p. 64

pimo:partOf A.2.38 p. 65
Subproperties –
Description The subject location is contained within the object

location. For example, a room is located within a
building or a city is located within a country.

A.2.34 narrower

Domain
Range
Superproperties –
Subproperties –
Description

A.2.35 objectProperty

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54
Superproperties –

Task Force Ontologies Version 1.0 64

NEPOMUK 02.09.2008

Subproperties pimo:attendee A.2.3 p. 56
pimo:attends A.2.5 p. 56
pimo:containsLocation A.2.8 p. 57
pimo:hasLocation A.2.19 p. 60
pimo:hasOrganizationMember A.2.20 p. 60
pimo:hasPart A.2.24 p. 61
pimo:hasTopic A.2.25 p. 62
pimo:isLocationOf A.2.27 p. 62
pimo:isOrganizationMemberOf A.2.28 p. 63
pimo:isRelated A.2.29 p. 63
pimo:isTopicOf A.2.30 p. 63
pimo:locatedWithin A.2.33 p. 64
pimo:partOf A.2.38 p. 65
pimo:subTopic A.2.42 p. 66
pimo:superTopic A.2.43 p. 67

Description The object of statements is another Thing. Users
should be able to edit statements defined with
this property. Abstract super-property.

A.2.36 occurrence

Domain pimoThing A.1.32 p. 54
Range rdfsResource
Superproperties –
Subproperties pimo:groundingOccurrence A.2.16 p. 59

pimo:hasOtherConceptualization A.2.21 p. 60
pimo:hasOtherRepresentation A.2.22 p. 61

Description The subject Thing is represented also in the ob-
ject resource. All facts added to the object re-
source are valid for the subject thing. The subject
is the canonical represtation of the object. In par-
ticual, this implies when (?object ?p ?v) -> (?sub-
ject ?p ?v) and (?s ?p ?object) -> (?s ?p ?subject).
The class of the object is not defined, but should
be compatible with the class of the subject. Oc-
currence relations can be inferred through same
identifiers or referencingOccurrence relations.

A.2.37 organization

Domain pimoOrganizationMember A.1.21 p. 50
Range pimoOrganization A.1.20 p. 49
Superproperties pimo:associationMember A.2.2 p. 55
Subproperties –
Description relation to the organization in an Organization-

Member association.

A.2.38 partOf

Domain pimoThing A.1.32 p. 54
Range pimoThing A.1.32 p. 54

Task Force Ontologies Version 1.0 65

NEPOMUK 02.09.2008

Superproperties pimo:objectProperty A.2.35 p. 64
Subproperties pimo:isOrganizationMemberOf A.2.28 p. 63

pimo:locatedWithin A.2.33 p. 64
pimo:superTopic A.2.43 p. 67

Description This is part of the object. Like a page is part
of a book or an engine is part of a car. You
can make sub-properties of this to reflect more
detailed relations.

A.2.39 referencingOccurrence

Domain pimoThing A.1.32 p. 54
Range nie InformationElement ?? p. ??
Superproperties –
Subproperties –
Description The subject thing is described in the object doc-

ument. Ideally, the document is public and its
primary topic is the thing. Although this prop-
erty is not inverse-functional (because the Occur-
rences are not canonical elements of a formal
ontology) this property allows to use public doc-
uments, such as wikipedia pages, as indicators
identity. The more formal hasOtherRepresen-
tation property can be used when an ontology
about the subject exists.

A.2.40 roleContext

Domain pimoPersonRole A.1.24 p. 51
Range pimoThing A.1.32 p. 54
Superproperties pimo:associationMember A.2.2 p. 55
Subproperties pimo:attendingMeeting A.2.4 p. 56
Description The context where the role-holder impersonates

this role. For example, the company where a
person is employed.

A.2.41 roleHolder

Domain pimoPersonRole A.1.24 p. 51
Range pimoPerson A.1.22 p. 50
Superproperties pimo:associationMember A.2.2 p. 55
Subproperties –
Description the person taking the role

A.2.42 subTopic

Domain pimoTopic A.1.33 p. 55
Range pimoTopic A.1.33 p. 55

Task Force Ontologies Version 1.0 66

NEPOMUK 02.09.2008

Superproperties pimo:hasPart A.2.24 p. 61
pimo:objectProperty A.2.35 p. 64

Subproperties –
Description The object topic is more specific in meaning than

the subject topic. Transitive. Similar in meaning
to skos:narrower

A.2.43 superTopic

Domain pimoTopic A.1.33 p. 55
Range pimoTopic A.1.33 p. 55
Superproperties pimo:objectProperty A.2.35 p. 64

pimo:partOf A.2.38 p. 65
Subproperties –
Description The object topic is more general in meaning

than the subject topic. Transitive. Similar to
skos:broader.

A.2.44 taskDueTime

Domain pimoTask A.1.31 p. 53
Range xsddateTime
Superproperties pimo:datatypeProperty A.2.11 p. 58
Subproperties –
Description when is this task due? Represented in ISO 8601,

example: 2003-11-22T17:00:00

A.2.45 wikiText

Domain pimoClassOrThing A.1.7 p. 44
Range rdfsLiteral
Superproperties –
Subproperties –
Description A wiki-like free-text description of a Thing or

a Class. The text can be formatted using
a limited set of HTML elements and can
contain links to other Things. The format
is described in detail in the WIF specification
(http://semanticweb.org/wiki/Wiki_Interchange_Format).

Task Force Ontologies Version 1.0 67

	Abstract
	Status of this document
	Introduction
	Downloading PIMO

	PIMO integrates with key ontologies
	Examples
	PIMO ontology and namespaces

	Creating Personal Information Models
	The User and their Individual PIMO
	Things
	Connecting Things to the User's PIMO
	Identification of Things
	A Complete Example
	Labels and Names of Things
	Textual description of Things
	Rating and Ranking Things
	Modelling Time
	Representing Modification and Change Dates
	Setting the Class of a Thing
	The PIMO-upper ontology
	Classes in PIMO-Upper
	Describing Things with Attributes and Relations
	Generic Properties in PIMO-Upper
	Refined properties in PIMO-Upper
	Creating Personalized Classes and Properties
	Collections of Things
	Modeling Associations and Roles in PIMO

	Connecting PIMO to Information Elements
	Connecting Things and Classes to Folders
	Integrating Facts about Things

	PIMO-group level: Group and Domain ontologies
	Extending PIMO
	Refining Elements of PIMO-upper
	Markup for the new ontology
	Information Elements
	Extension by Sub-classing from External Classes
	Summary

	Importing Domain Ontologies into a User's PIMO
	Practical Directions on Using PIMO
	Creating Things
	Changing the Type of a Thing
	Deleting a Thing
	Deleting User-generated Classes and Properties
	Merging Duplicates
	Unification of multiple Information Elements into one Thing
	Tagging and Annotating Files
	Geo-locating Things
	Defining what is in the PIMO and what is not: NRL Graphs and definedBy
	Using NAO and NIE Elements for Annotation
	How to Infer Knowledge Using Rules?

	Rules Defined by PIMO
	Construction Rules
	Validation Rules
	Rules Valid when Integrating with NIE

	Sources considered for designing PIMO
	PIMO Specification
	Ontology Classes Description
	Ontology Properties Description

